Rule Based Incremental Congruence Closure
with Commutative Symbols

Sylvain Conchon and Evelyne Contejean

PCRI — LRI (CNRS UMR 8623) — Inria Futurs — Université Paris Sud
Bt. 490, Université Paris-Sud, 91405 Orsay Cedex, France
{conchon,contejea}@lri.fr

Abstract. We present a rule based congruence closure algorithm that
constructs a “term preserving” union-find data structure from a set of
ground equations. Starting from a set of two simple inference rules, we
show how our algorithm can be made incremental by adding two extra
rules to the original set. Commutative symbols are also handled thanks to
a slight modification of the rules. The main originality of this work rests
on the description level of our framework which is high enough to enjoy
rigorous (and self-contained) correctness proofs and low enough so that
the rules are directly derived from our efficient OCaml implementation.

1 Introduction

The theory of equality gives the semantics of the equality symbol =. It is defined
as the smallest reflexive, symmetric and transitive relation that satisfies the
Leibniz’s rule (also called the congruence axiom): @ = b = f(@) = f(b), for any
vectors of terms @, b and any (uninterpreted) function symbol f.

The use of the equality predicate is so ineluctable in logic that the question
of its automated treatment has been studied very early in computer science. In
particular, the problem of deciding whether a ground equation a = b logically
follows from a set E of ground equalities, denoted by a =g b, has been found
critical in many applications, including mechanical program verification.

Algorithms to compute the congruence closure of a set of ground equations
do exist [5,10, 13,2, 12]. Basically, two different approaches have been proposed:
the first one aims at constructing a union-find data structure that stores the final
equivalence relation on terms [5, 10, 12], while the second one aims at producing
a convergent rewriting system which can then be used for checking equalities [13,
2].

Nowadays, many automated theorem provers use congruence closure algo-
rithms to handle their built-in equality predicate [4,3,6]. However, because of
specificities related to their application domains, these provers require some ad-
ditional properties on their congruence closure module.

First, the backtracking search underlying the architecture of SAT-based the-
orem provers enforces an incremental treatment of the set of ground equations.
Indeed, for efficiency reasons, equations are given one by one by the SAT solver to

the equality module which prevents it from realizing a global preliminary treat-
ment on them as a set, unless restarting the congruence closure from scratch.

Secondly, theorem provers that handle quantified formulas have to find rele-
vant instances of definitions, lemmas or axioms among the set of ground terms in
the formula to be proved. While no satisfactory solution is known to this semi-
decidable problem, it is clear that the pattern-matching algorithm underlying
this process should benefit from the equalities discovered by the congruence clo-
sure algorithm. For instance [9], if it is assumed that a = ¢g(b) and b = g(a), then
P(a,a) can be proved from the axiom Vz, P(g(g(z)),z) by instantiating z by a.

We make here an important difference between the two approaches described
above for the construction of congruence closure. The rewriting approach has to
find the instance by solving the matching problem g¢(g(z)) = a Ax = a. A
possible solution is to use the narrowing, which terminates in that case since
the convergent rewriting system contains only ground rules [7]. On the other
hand, the equivalence classes of the union-fond data structure returned by the
first approach should help the matcher to find that the pattern g(g(z)) coincide
with the term a by an enumeration of the classes. Obviously, and importantly,
the matching process will be more efficient if the union-find structure contains
only ground terms from the original set. Furthermore, the matcher should also
benefit from any extension provided to the congruence closure algorithm. For
instance, if commutative symbols are handled by the equality module, it should
be possible to match the pattern 1+ = against the term a + 1.

Finally, because congruence closure algorithms are at the core of theorem
provers, it is crucial that their design and implementation are correct. For that,
their formal description should be fine-grained enough to model most of the
mechanisms currently used in the implementation and their correctness proofs
should be as rigorous as possible.

Our Work. We describe a congruence closure algorithm by a set of two simple
inference rules: given a set T of ground terms, our system aims at constructing
a union-find data structure representing the congruence closure of a set E of
equalities between terms of 7. The level of description of our framework is high
enough to enjoy a rigorous (and self-contained) correctness proof and low enough
so that the rules are directly derived from our efficient OCaml implementation.

We then show how to extend our algorithm to make it incremental. In that
case, the set 7 is empty and the union-find data structure returned by the
inference rules contains only ground terms contained in the processed equalities.
The main originality here is that the incrementality process is clearly separated
from the congruence closure part of the system: two extra rules are added to the
system while keeping the original set intact. This presentation allows us to prove
the correctness of the whole system without reproving most of the correctness
facts relative to the closure mechanism.

Last but not least, the modularity of our algorithm allows us to extend
it modulo some built-in theories. As an example, we show how commutative
symbols can be handle easily with a very slight modification of the rules. As for
the original algorithm, the union-find data structure returned by the frameworks

contains only ground terms of the initial set of equations. Taking care of this
fundamental property makes the correctness proof surprisingly difficult.

Organization of the Paper. We present in section 2 a non-incremental congruence
closure algorithm based on two simple inference rules and we provide a rigorous
correctness proof for it. In section 3, we show how to the addition of two new
rules to the original system make it incremental. We demonstrate the extension
capabilities of our approach in section 4 by showing how commutative symbols
can be handle very easily. We conclude in section 5.

2 A Rule Based Congruence Closure Algorithm

Let X be a finite signature, 7 be a finite set of ground X —terms closed by
subterms and E be a set of equalities between terms of 7. We denote =g the
equational theory induced by E on T'(X).

We are interested in deciding whether two terms of 7 are equal modulo E
by a congruence closure algorithm that we shall formalize thanks to a set of
two inference rules described figure 1. These rules handle triples (I" | A | &) as
configurations where:

— I is used for propagating the discovered equalities by congruence. More
formally, I" is a map, that is a partial injective function, which contains
associations u — C where u is a term and C a set of terms. We denote by
I'(u) = C the fact that I" contains u — C and by I'(u) = L the fact that I"
does not contain any association for u. If an equality u = v is discovered it
has to be propagated to terms which have u or v as subterms, namely I'(u)
and I'(v).

— A is a union-find data structure which describes the currently known equal-
ities; A(u) denotes the representative of w,

— & contains the ground equations which still have to be processed.

(F'W{A(a) = A, A®b) — B} | A| {a=b} W)
(Tw{A'(a)~» AUB} | A" | &' U)

’_ p—
with {A = A+ {a=0b}

Ala) # A(®)

CONGR

= - -

& = {f(@)=f(b) | f@ € AN f(b) € BAA' (@) = A'(B)}

(I'| A|{a=0}wd)

REMOVE
(r|a|e)

Afa) = A(b)

Fig.1. A small set of inference rules for CC.

A configuration K is a T -configuration when all terms occurring in K are in
T. A configuration K = (I' | A | &) reduces to K' = (I'" | A" | ¢'), denoted by

K — K',if K’ can be obtained from K by applying one of the rules of figure 1
(—* is the reflexive transitive closure of —).

Contrarily to completion based congruence closure algorithms, our approach
does not create new terms:

Lemma 1. If K - K' and K is a T -configuration then so is K'.

Let Ko = (I'y | id | E) be the initial T-configuration of the algorithm where
I'r is the reverted DAG! of the direct subterms of 7 with maximal sharing and
id is the union-find data structure where all terms of 7 are pairwise distinct.

Ezample 1. If T = {a,b,9(a,b),9(g9(a,b),b)} then I'r = {a — {g(a,b)};b —
{9(a,b),9(g(a,b),b)}; g(a,b) = {g(g(a,b),b)}; g(g(a,b),b) — {}}

Theorem 1. The relation — is terminating from any T -configuration.

Proof. The measure associated with a 7T-configuration (I" | A | &) is the pair
(¢,n) where ¢ is the number of equivalence classes in A and n the number of
equations in @. By lemma 1, (I" | A | &) contains only 7 terms thus applying
CONGR on an equation u = v strictly decreases ¢ since u,v € 7. Finally, an
application of REMOVE does not change ¢ and strictly decreases n.

Lemma 2. Any irreducible configuration obtained from Ky is of the form (I' | A | §).

Theorem 2 (Correctness). For any irreducible configuration (I, | As |)
obtained from Ky, for any terms u,v € T, u =g v iff Ay (u) = A (v).

Proof. The if direction is proved by the following invariant:

LU | A|®)) =VYu,0 € T(Z), {f(:")v Ca e

— [(Kp) is immediate.

— Let us prove that if K — K’ and I;(K) then I,(K'). If K' is obtained
from K by REMOVE the result is immediate since A remains unchanged
and the new set of equations of K' is a subset of that of K. Otherwise,
K'=(I"| A=A+ {a=0b}| & U®) is obtained by CONGR.

e Let u and v such that A'(u) = A’(v). If A(u) = A(v) the result follows
by induction hypothesis. Otherwise A(u) = A(a) and A(v) = A(b)
(possibly by exchanging v and v). By induction hypothesis a = b €
& U {a = b} implies a =g b; moreover (again by induction hypothesis)
u =g a and v =g b. We conclude by transitivity of =p.

eletu =ve dUP. If u =v € & then we conclude by induction
hypothesis. Otherwise, u = f(@) and v = f(b) and A'(@) = A’(b) hence
by the above argument @ =g b. We conclude by the congruence property
of =E.

! with respect to its associations

Let us now face the only if direction. Let =A be the equational theory
induced by the set of axioms {u = v | A(u) = A(v)}. We first prove the following
invariants:

IQ((‘F | A | ¢>) :tha"'atn € T(E)7
fltr, .. tn) €T = Vi, f(t1,...,tn) € T'(A(%))
L A|®)=Vu,ve T, u=gv= (u,v) € (¢ U=24)*

— I,(Kp) holds trivially by construction of I'7 and since Ay = id.

— Let us prove that if K — K’ and I>(K) then I,(K'). If K’ is obtained from
K by REMOVE the result is immediate since I' and A remain unchanged.
Otherwise, it is obtained by CONGR and K = (I' W {A(a) — A, A(b) —
B} | Al{a=0bwd)and K' = (I'W {A'(a) » AUB} | A" | &' U D).
Let f(t1,...,t,) be a term of 7. For each t;, we shall distinguish the two
following cases:

o If A(t;) # A(a) and A(t;) # A(b) then A'(t;) = A(t;) and I (A'(t;)) =
I'(A(t;)). We conclude by induction hypothesis.
e If A(t;) = A(a), by induction hypothesis f(t1,...,t,) € A. The property
holds since A’(t;) = A'(a) and I"(A'(a)) = AU B.
e The case A(t;) = A(b) is symmetrical.
— I3 is obvious.

Now, we shall conclude by proving that for any irreducible configuration
Ko = (I'no | Ax | 0) and for all terms u,v € T if u =a_, v then A (u) =
A (v).

— We first prove the following congruence property of A.,:
If f(@) € T, f(V) € T and Aso (@) = Aoo (V) then Ao (f () = Aoo(f (7).

e The case where « is syntactically equivalent to ¢ is immediate.

e Otherwise, we have Kg -* K — K' —* K., where K is the last
configuration such that A(@) # A(¥), and K' is first one such that
Al(@) = A'(7). K' is obtained from K by applying the rule CONGR and
there exists an index ¢ such that A(u;) # A(v;), A(u;) = A(vy) for
j#i,a=b¢ed Aly) = Aa), A(v;) = A(b) and A" = A + {a = b}.
Furthermore, A(a) — A € I' and A(b) — B € I'. By I on K we have
f(@) € A and f(¥) € B so the CONGR rule will add f(%@) = f(¥) in ¢
and this equation will eventually be part of A, .

— Finally, we proceed by induction on the size of the proof of u =a_ v, where
the size of a proof, seen as a sequence of equational steps, is the total sum
of the terms’ size which occur in it. The result is immediate when u is
syntactically equivalent to v. Otherwise, we distinguish the two following
cases:

o If u = f(d) =a, f(¥) = v has no equational step at the root then

@ =a,, U and all the subproofs u; =a_ wv; are strictly smaller than

u =a_, v. By induction hypothesis, and since 7T is closed by subterms,

we have u;,v; € T and Ay (u;) = Ay (v;). We then conclude by the

above property.

e If there is at least an equational step at the root in the proof, the proof
has the following shape u =4 _ o' (—)ﬁw v’ =a_ v. By definition of =4 __,
Ay (u') = Ax(v') hence u',v" € T. Applying the induction hypothesis
on the subproofs u =a_, u' and v =_ v' yields Ay (u) = Ay (u') and
Ay (v) = Ay (v'). We conclude by transitivity.

Ezample 2. From Ky = (I't | id | {g(a,b) = a}) we can get the following
configurations:

9(a,b) = {g(g(a,b),0)}} | id | {g(a,b) = a})
(9(a;0),b)} | 1d +{g(a,b) = a} | {g(a,b) = g(g(a,b),
a;9(a,b) = g(g(a,b),a)} | 0)

I'v{aw— {g(a,b)};
'y {a~ {g(a,b);
s | id + {g(a,b)
I | A |)

So, we have A, (g(g(a,b),b)) = Ax(a) which proves that g(a,b) = a implies
9(g(a,b),b) =a

IIQ“

Il ¢ i |||

(
(
(I
(

3 Adding Incrementality

We present in this section an incremental version of our algorithm where the
set E is now considered as a sequence of equations and queries between closed

terms. A query u Z v of E is valid if and only if u =g/ v where E’ is the set of
equations of E occurring before the query.

Taking the sequential aspect of E into account amounts to replace the union
of sets (U and W) by a sequence operator ; for the third component of the
configurations in the rules CONGR and REMOVE of figure 1.

In the sequential case, 7 is not known at the beginning of the algorithm.
Hence I is empty and I has to be constructed step by step from the sequence
E. However, it’s not sufficient!

For instance, if E contains the sequence a = b; f(a) = t; f(b) = u, the non-
incremental algorithm will fail to prove that ¢ =g u since the equality a = b is
processed too early, when f(a) and f(b) are not yet in the structure I'.

This problem is fixed by the rule ADDTERM, described in figure 2, which
determines the new equalities that can be propagated by congruence when pro-
cessing a new term. For example, processing the term f(b) in f(b) = wu will
update I" and add f(a) = f(b) to & which will eventually trigger the CONGR
rule. We also add an extra rule QUERY to validate queries.

Theorem 3. The relation — is terminating from any configuration (B | id | &)
where @ is a finite sequence.

Proof. We define the set T as the set of terms occurring in ¢ and closed by sub-
terms. Since @ is finite, 7 is finite. The measure associated with a 7-configuration
(L' | A|) is the triple (¢, g,n) where ¢ and n are defined as in theorem 1. g is
the number of terms w in 7 such that I'(A(u)) is not defined. CONGR strictly
decreases c. REMOVE and QUERY leave ¢ and g unchanged and strictly decreases
n. ADDTERM leaves ¢ unchanged and strictly decreases g.

a)})

(IMWUpea{A(v) = Cu} | A | C[f(@)];2)

ADDTERM - - —
(rw I | A& C[fa)]; @)

r(f(a) =1
where C[f(a@)] denotes an equation or a query containing the term f(@)

with {F' = (f(@ = {})+{A(W) = C + f(@) |vea}
& = {f@=f0®)|veafk) eC.nAQ@)=A®b }

(T'U{A(a) — A, A®b) = B} | A| a = b; &) B
QUERY —— A o A AD) = B | A &) ~@ =40

Fig. 2. Incremental Congruence Closure Algorithm

Lemma 3. Any irreducible configuration obtained from K is either of the form
(T A|0) or (I' | A | u0v;8) with A(u) # A(v).

Theorem 4 (Correctness). For any ground terms u,v, the equation u =g v
holds iff there is a configuration (s | Ao | 0) reachable from (B | id | E;u < v).

Proof. The if direction is proved by the following invariant:

Alu) = A(w) =>u=gwv

Il(<F|A|¢>)ZVU’UET(E){UZUE¢:>UZEU

— [(Kp) is immediate.
— Let us prove that if K — K' and I, (K) then I;(K'). By case on the last
rule applied.
e If K' is obtained by REMOVE or CONGR then the proof of the non-
incremental system applies verbatim.
e If K’ is obtained from K by QUERY the result is immediate since A
remains unchanged and the new set of equations of K’ is equal to that
of K.
e If K' = (I'"| A| &';C[f(@)];P) is obtained by ADDTERM. If A(u) =
A(v) the result is immediate by induction hypothesis. Let u = v €
& Cf(@)];®. If w = v € C[f(d)];® then we conclude by induction
hypothesis. Otherwise, u = v € &', u = f(@), v = f(b) and A(@) = A(b)
hence by the above argument @ =g b. We conclude by the congruence
property of =g.

Hence, if (I's, Ao, ?) is reachable from (0, id, F;u z v), the last step has

to be an application of the QUERY rule on u Z v, which means that A (u) =
Ao (v). We conclude by the invariant I; that u =g v.

Let us now face the only if direction. The equalities associated with a con-
figuration K = (I" | A | §) are defined as

EqK)={u=v|Alu) =A)}U{u=v]|u=ve P}

It should be noticed that £¢(K) does not contain the queries occurring in ¢. We
first prove the following invariants:

LT | A|®)) =Vt,....tn € T(X), [(A(f(t1,...,ts))) # L =
Vi, T(A() # LA Ftr, .. ta) € T(A(t)
L(K) =VYu,v € T(X),u =g v=u=¢gqk) v

— I,(Kp) holds trivially since I is undefined for all terms.
— Let us prove that if K — K' and I»(K) then I5(K'). By case on the last
rule applied.

e REMOVE: immediate since I" and A are unchanged.

e CoNGR: We shall first prove that for all terms v, if I"(A’(v)) is defined
then so is I'(A(v)).

Let us assume that CONGR has been applied on the equation a = b. We
distinguish the two following cases: if A(v) # A(a) and A(v) # A(b)
then I'"(A'(v)) = I'(A(v)) else A(v) = A(a) or A(v) = A(b) hence
I'(A(v))) is defined since I'(A(a))) and I'(A(b))) have to be defined in
order to apply CONGR.

Using the above property, we can apply the induction hypothesis and
then conclude as in the proof of I in the standard case.

e ADDTERM. Let us first notice the immediate property P that for all
terms v, if I'(A(v)) is defined then I'"(A’(v)) remains also defined and
I'(A(v)) CI'"(A'(v)). Now, if I"(A'(f(t1,...,t,))) is defined this means
that either I'(A(f(t1,...,t,))) is defined or f(t1,...,tn) = f(@). We
distinguish these two cases:

x If I'(A(f(t1,...,t,))) # L then we can apply the induction hypoth-
esis and get that I'(A(t;)) is defined and contains f(t1,...,t,). We
conclude by P(t;).
x If f(t1,...,t,) = f(@) then I'(A(t;)) # L since ADDTERM applies.
By construction f(t1,...,t,) is in I (A(t;)) for each ;.
— I3 is immediate since £q(Kp) contains E, and if K — K’, then £q(K) C
Eq(K").

By the termination property, there exists an irreducible configuration K,
reachable from () | id | E;u < v) which is either of the form (I'y, | Ay |) or
(I'o | Ao | 1 L v) with Ay (u) # As(v). The first case is immediate. In the
last case, since v =g v and @, = u Z v, by Is we have u =a_ v. Furthermore,
since ADDTERM does not apply, I'so(Aoc(u)) and I'no(A(v)) are defined. We
shall conclude (ad absurdum) by proving that for any irreducible configuration
Koo = (I'so | Aso | Poo) and for all terms u and v in T'(X) such that s (Ao (u))
and 'y, (As(v)) are defined and u =a_ v then Ay (u) = Ax(v).

— We first prove the following congruence property of A.,:

For all f(i@) and f(?) in T'(X) such that I'w (Ao (f(%))) and e (A (f(7)))
are defined and Ay (@) = Ao (¥) then Ao (f(@)) = Ax(f(7)).

e The case where 4 is syntactically equivalent to ¥ is immediate.

e Otherwise, there exists along the reduction path from K, to K, a con-
figuration (I" | A | &) such that A(@) = A(7) holds for the first time.
We then distinguish two cases. Either I'(A(%)) and I'(A(¥)) are both
defined and we can conclude as in the standard case, or at least one
of them is undefined. Let us assume without loss of generality that in
that case f(¢) is added after f(@): this means that there exists a con-
figuration K' = (I'" | A" | #') such that A'(@) = A'(0), I'"(A'(f(@)))
is defined, I'"(A'(f(?))) is undefined, and K' — K" = (I'" | A" | &")
where I'"(A"(f(7))) is defined. K" is necessarily obtained by an appli-
cation of ADDTERM on f(¢). Since I'"(A'(f(@))) is defined and Ir(K")
holds, we have f(@) € I''(A’(a)) for all a in ¥. The rule ADDTERM has
thus to add the equation f(@) = f(¥) to &'. The result follows.

— Finally, we proceed by induction on the size of the proof of u =a_ v. The
result is immediate when u is syntactically equivalent to v. Otherwise, we
distinguish the two following cases:

o If u = f(d@) =a_, f(¥) = v has no equational step at the root then
@ =a,, U and all the subproofs u; =a_ wv; are strictly smaller than
u=a_ v. Since I holds on Ky, I'no(Ax(a)) is defined for all a in @ or
7. By induction hypothesis Ay (u;) = Aso(v;). We then conclude by the
above property.

e If there is an equational step at the root in the proof, the proof has
the following shape u =a_ u' <+4_ v’ =a_ v. By definition of =a_,
Aso(u') = Ay (v") hence there must exist two configurations K = (I' | A | @)
and K/ = (I" | A" | &) such that K — K', A(u') # A(v') and
Al(u")y = A'(v'). In that case, K’ is obtained from K by an application
of CONGR on an equation u" = v" where A(u') = A(u"), A(v') = A(v")
and I'(A(u'")) and I'(A(v")) are defined. Therefore, by P, I'y,(Ax(u'))
and I, (A (v')) are also defined. Applying the induction hypothesis on
the subproofs u =4 «' and v =a_ v’ yields Ay (u) = Ax(u') and
A (v) = Aso(v"). We conclude by transitivity.

Ezample 3. From Ko = (0 | id | $o) where S is a =b; f(a) =t; f(b) = u;t =u
we can get the following configurations:

K, ('l A ®) Rule

Ko|(0 | id | a=b; f(a)=t; f(b)=u; t = u) ADDTERM*on a,b
Ki|(am {}be {}|id | a=b; f(a)=t; f()=ujt =u) |CONGR

Ko|(As(b) = {} | {a=b} +id | f(a)=t; f(B)=w;t =u) |ADDTERM on f(a),t
K3|(Az(b) = {f(a)},... [Aa | P2) CONGR

Ki[(A4(0) = {f(@)},.. | {f(a)=t} + Ay | f(b)=u;t = u) ADDTERMon £(b)
Ksl(... | Ay | fla)= (b) Fb)=u;t = u) CONGR*ADDTERM*
Kol(... | {t=u}+... |t=u) QUERY

Kr|(... [{t=u} +... [0)

4 Handling Commutative Symbols

Let Y¢ be the subset of X corresponding to the commutative symbols. We
denote by =g ¢ the equational theory induced by E and the commutativity of
the symbols of X¢.

We suppose given <7 (x) a total ordering on the terms of T(X) and we define a
function which sorts vectors of T'(X) only if its extra parameter is a commutative
symbol. More formally,

sort(f,u) =if f € X'\ ¢ then @ else (@ sorted by <r(x))

In order to handle commutative symbols in the incremental algorithm?, we
only have to modify the rules CONGR and ADDTERM by changing their defini-
tions of the set @' as follows:

CONGR:

?' ={f(@) = f(b) | f(@ € AN [f(b) € BAsort(f,A'(a)) = sort(f,A'(b))}

ADDTERM: . . .
' ={f(a) = f(b) |v €a,f(b) € Cy Asort(f, A(@)) = sort(f, A(b))}

It is obvious that the termination of — is preserved since sorting does not
affect the number of equivalence classes of A and does not create new terms.

Surprisingly, the correctness proof is made difficult by the fact that in or-
der to keep the “term preserving” property of A, we restrict the new equalities
introduced in @ to terms defined in I'. For instance, if the symbol + is com-
mutative, the proof of ay + (as + a3z) =¢ (as + a2) + a1 needs a middle term
(either a; + (a3 + ag) or (az + az) + a;) which is not in the original set of
terms. We thus have to prove that our algorithm can detect that the query

a; + (a2 + asz) z (as + a2) + ay is valid without using this middle term.

Theorem 5 (Correctness). For any ground terms u,v, the equation u =g.c v
holds iff there is a configuration (I, | As | B) reachable from (§ | id | E;u Z v).

Proof. The proof has the same structure as in section 3. We prove the invariants
I, and I2 defined as in the incremental case by replacing =g by =g c. I5 has to
be slightly modified by adding some more equations to the set £¢(K) in order
to take care of commutativity.

The proof of the if direction applies almost verbatim. The only difference
in the proof of I; is in the induction step where the new equation f(uy,us) =
f(v1,v2) is added in &' by CONGR or ADDTERM because f is a commutative
symbol and sort(f, A'(ui,us)) = sort(f, A'(v1,v2)). This means that either
Al(uy) = A'(vy) A Al(ug) = A'(vz) or Al(uy) = A'(va) A A'(uz) = A'(v1). In

2 Handling commutative symbols in the non-incremental case would require to modify
the algorithm in such way that it would amount to add a kind of incrementality in
the CONGR rule. Incrementality is needed when a proof u =g,¢ v uses only C steps.

10

the first case, we conclude as in the non-commutative case. In the second case,
we get that vy =g ¢ v2 and us =g ¢ v1, hence

f(ul,uz) =E.,C f(U27U1) =E,C f(vl,v2)

since the equality f(z,y) = f(y,z) €e C C EUC.
Let us now face the only if direction. The set of equations associated to a
configuration K = (I | A | &) with respect to a set of ground terms G is

Eqg(K) = {u=v| Alw) = Aw)} U
{u=v|u=ved} U
fee,
F(Aw) # L v
flug,us) = f(us,uy) | | u; is a subterm of a term in G V
u; occurs as a subterm in a
non-trivial equation of @

It should be noticed that the queries and the equations © = u of @ do not
affect the definition of £q. I5 is defined as in the incremental case, and

I(K)=Vu,veT(Y),u=gcv=u =Equny (K) U

The proof of I, is exactly the same as in the standard case, since the modifi-
cation does not affect the first two components of the configurations. However,
the invariant I is no longer obvious as in section 3.

— I3(Kp)isVu,v € Tu=gcv=u =€47u.03(Ko) U where

Eqqu,y(Ko) ={a=0b] A(a) = A(b)} U
{a=bla=beE} U
fee,
u; is a subterm of u or v V
u; occurs as a subterm in a
non-trivial equation of E

flur,ug) = flug,ur)

I5(K,) is proved by induction on the size of the sequence of equational steps
m of u =g ¢ v: If m has length O then v and v are syntactically equal and
the result is immediate. Otherwise,

e If there is no equational step at the root then u = f(uy,...,uy), v =
f(v1,...,v,) and for all ¢ € {1..n} there is a proof m; of u; =g,c v;
obtained by projection of 7. Hence each =; is strictly smaller than 7. So,
by induction hypothesis, u; =Eqqu, 0py (Ko) Vi Since u; and v; are respec-
tively subterms of u and v, it is clear that Eqgy, v,1(Ko) € Eqgu,v} (Ko)-
Hence u; =¢, (o} (o) Vi and by the congruence property of equational
theories, we get that u =413 (Ko) U

e If there is at least an equational step at the root using an equation of
E, the proof m has the following shape u <}, o u' <34 v’ < ¢ v. The

11

sub-proofs 71 of u =g ¢ u' and 7w of v/ =g ¢ v are smaller than =:
by induction hypothesis, u =400y (Ko) u' and v’ =41y (Ko) V- Since
the equation u' = v' belongs to E, the sets {u' = v'}, £qqy w3 (Ko) and
Eqgw w1 (Ko) are all included in Eqy,,, 1 (Ko). We conclude by transitivity.
e If there is exactly one equational step at the root, which is a C-step,
then the proof 7 is of the form:
w= flur,uz) &7 fluiuh) ok e fluh,u) S5 0= flov)
and there exist m1 : u1 =g, ¢ U] =g,c v2 and T 1 Us =g,c Uy, =E,C V1
obtained by projection of 7. By induction hypothesis on 7m; and s,
UL =Eqey, 0y (Ko) V2 and uo =Eq(u; vy (Ko) V1 Since uy,us,v; and v
are subterms of u or v, £qy, v,} (Ko) and Eqqy, .1 (Ko) are included in
Eqfu,v1(Ko). Moreover by construction, £qy, .1 (Ko) contains the equa-
tion f(uy,u2) = f(u2,u1). v and v have the following proof of £qy,, .} (Ko)-
equality:

u = f(u1,u2) ng{u,v}(Ko) fuz,u1) ©™ fluz,v2) ™ f(vi,02) =v

o If there are at least two equational C-steps at the root, then the proof
m is of the form:
w= flurue) T F,) & Fluu)) T £ 0) & Flut) v
where u; =g ¢ u} and us =g ¢ uy. We can rebuild a strictly smaller
middle proof u = f(uz,u2) =g f(uf,uy) =gc v to which we can
apply the induction hypothesis.

— The induction step showing that if K — K’ and I3(K) then I3(K") follows
immediately from the fact that £qg(K) C Eqg(K'):

e QUERY : obviously, a query in @ does not affect the definition of £qg,
hence £qg(K) = Eqg(K').

e REMOVE : If this rule removes an equation © = v in @, it was already
in A. If 4 and v are syntactically equal, the equation u = v is trivial,
hence does not induce any commutative equation in the third part of
Eqg(K). Otherwise, the induced equations are still in Eqg(K’) since u
and v have to be added by the rule ADDTERM before the rule CONGR
added an equation equivalent to u = v to A, hence I'(A(w)) and I'(A(v))
are defined and by I, the subterms of u and v enjoy the same property.
As a conclusion, Eqg(K) = Eqg(K').

e CONGR : If this rule moves an equation u = v from @ to A, this means
that I'(A(u)) and I'(A(v)) are defined; we can conclude as above.

e ADDTERM : This rule increases ¢ and makes I'(A()) defined on a larger
set of terms, hence it is obvious that Eqg(K) C Eqg(K").

By the termination property, there exists an irreducible configuration K,
reachable from (§) | id | E;u < v) which is either of the form (I | Aso | @) or

12

(o | Ao | u L v) with Ay (u) # Axo(v). The first case is immediate. In the
last case, since u =g,¢c v and o, =u Z v, by I3 we have u =Eu0y (Koo) V-

Furthermore, since ADDTERM does not apply I (Ax(u)) and I (Ase(v))
are defined and by I, this is also the case for the subterms of u and v.

Eqpuy(Keo) ={a=10| Axs(a) = A (b)} U
{f(u1,uz) = fuz,u) |f € e, (Too(Doo(ui)) # L) }
:gqﬂ(Koo)

We shall conclude (ad absurdum) by proving that for any irreducible con-
figuration Ko, = (I'ne | Ao | Poo), for all terms u and v in T(X) such that
I (Ao (u)) and Iy, (Ao (v)) are defined, if u =¢ 4, (k) v then Ao (u) = Ao (v).

— As in the standard case, we first need a congruence property on A:

For all f(i@) and f(7) in T'(X) such that I'w (Ao (f(%@))) and e (A (f(7)))

are defined and sort(f, Ao (@)) = sort(f, Aw (7)) then A (f (@) = A (f(D)).-

e The case where # is syntactically equivalent to ¥ is immediate.

e Otherwise, there exists along the reduction path from K, to K, a con-
figuration (I" | A | &) such that sort(f, A(@)) = sort(f, A(¥)) holds
for the first time. We then distinguish two cases. Either I'(A(%)) and
I'(A(7)) are both defined or at least one of them is undefined. In the
first case, the rule CONGR will add the equation f(@) = f(¥) to &, and
this equation will eventually become a part of A,,. In the second case,
let us assume without loss of generality that f(¢) is added after f(@):
this means that there exists a configuration K’ = (I'"" | A" | #') such that
sort(f, A'(@) = sort(f. (7)), I'(A'(f(#))) is defined, I'(A'(£(7)))
is undefined, and K' — K" = (I'" | A" | ") where I'"(A"(f(7)))
is defined. K" is necessarily obtained by an application of ADDTERM
on f(7). Since I'"(A'(f(@))) is defined and I5(K') holds, we have f(@0) €
I'"(A'(a)) for all @ in ¥. The rule ADDTERM has thus to add the equation
f(@) = f(¥) to &'. The result follows.

— Finally, we proceed by induction on the size of the proof of u =g,k) v-
The result is immediate when w is syntactically equivalent to v. Otherwise,
we distinguish the two following cases:

o If u = f(i) =¢q,(k..) f(¥) = v has no equational step at the root then
@ =gqy(k.) U and all the subproofs u; =g, (k.) vi are strictly smaller
than u =g, (k) v. Since I holds on K, I'(Aso(a)) is defined for
all a in @ or ¢. By induction hypothesis Ao (u;) = Aso(v;). We then
conclude by the above property.

o If there is at least an equational step at the root using an equation of A,
the proof 7 has the following shape u Hqu(Koo) u' Hgm v’ qum(Km) v,
where An(u') = Ao (v'). The sub-proofs 7y of u =¢4,(k..) v’ and 72 of
V' =gqo(K..) v are smaller than m and I (Ao (u')) and Iy (Ao (v')) are
defined (indeed the rule CONGR cannot add to A an equation equivalent
to u = v if [oo(Aso(u')) or I'(Aso(v')) are not defined): by induction

13

hypothesis, Ay (u) = Ax(u') and Ay (v') = As(v). We conclude by
transitivity.

o If there is exactly one equational step at the root, which is a C-step,
then the proof 7 is of the form:

A)* A)*
w= flun,ue) ©0 e | Fulub) o fubul) o0 v = fon,0)

and there exist T @ Uy =¢q (k) U] Zggp(k.) V2 and o Us =gq (k)
uhy =gq4y(k..) U1 Obtained by projection of 7. By I>(K), since ug, uz, vy
and vy are subterms of u or v, I'n(Ax()) is defined on them, so we
can apply the induction hypothesis and get that Ay (u1) = Ax(v2) and
Ao (ug) = Axo(v1). Hence sort(f, Ao (u1,us)) = sort(f, A (v1,v2))
and we conclude by the above property.

e If there are at least two equational C-steps at the root, then the proof
7 is of the form:

u= flu,us) <—><;§;§Kw> Fluh ub) o flub,ul)
A * ! 1 1 *
e e Tl ull) oA F ull) g ey v

where uy =gq, (k) vy and uy =g4, (k) uy. We can rebuild a strictly
smaller middle proof u = f(u1,u2) =gqy (k) f(ufsuy) =gk v tO
which we can apply the induction hypothesis.

Ezample 4. From Ko = (0 | id | &) where &g is a1 + (a2 + a3) L (as +as) +aq
we can get the following configurations:

K, (' AP Rule

Ko|(0 | id | Polay + (a2 + a3)]) ADDTERM™
K <02 — {CLQ + a3}, A | id | @0[013 + (lg]) ADDTERM
Ks|{az = {as + as,az + az},... | id | a2 + a3 = a3 + a2; Po) CONGR

K5 <a1 — { . .}, - | {GQ + a3 = asz + ag} + id | @0[(0/3 + ag) + a1]> ADDTERM
Ky (Iy | Az | a1 + (a2 + a3) = (a3 + a2) + a1; Py) CONGR
K5|(I5 | {ar + (a2 +a3) = (as + az) + a1} + Az |) QUERY
Ko[(T5 | 45 | 0)

5 Conclusion and Related Works

We have presented an incremental rule based congruence closure algorithm for
which rigorous correctness proofs are given. Following the original works on this
algorithm, our inference system constructs a union-find data structure that con-
tains only ground terms from the initial set of equalities. The way our framework
has been easily extended to handle commutative symbols is promising and we
leave for future works a generalized approach for handling others theories.

14

Related Works. Original papers [5,10, 13] have presented non-incremental con-
gruence closure algorithms using pseudo-code notations. Our first inference sys-
tem can be seen as a clean reformulation of these algorithms for which a rigorous
correctness proof is given.

Completion like methods [2,1, 8] demystified congruence closure algorithms
using the framework of ground completion. While this approach allows for rig-
orous correctness proofs, it fails to produce a union-find data structure used by
the pattern-matching algorithms underlying automated theorem provers.

Recent works [12, 11] have presented an incremental congruence closure algo-
rithm using pseudo-code notations which is not modular with respect to incre-
mentality and for which it is then more difficult to produce proofs. Furthermore,
the initial Currifying transformation applied to the terms makes difficult the
treatment of commutative symbols.

References

1. L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence clo-
sure modulo associativity and commutativity. In H. Kirchner and C. Ringeissen,
editors, Proceedings of FroCoS 2000 Nancy (France), volume 1794, pages 245-259.
Springer-Verlag, 2000.

2. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal
of Automated Reasoning, 31(2):129-168, 2003.

3. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In R. Alur and D. A. Peled, editors, 16th International Confer-
ence on Computer Aided Verification, volume 3114 of Lecture Notes in Computer
Science, pages 515-518, Boston, MA, USA, July 2004. Springer-Verlag.

4. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365-473, 2005.

5. P.J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressions
problem. J. ACM, 27(4):771-785, 1980.

6. J.-C. Filliatre, S. Owre, H. RueB8, and N. Shankar. ICS: Integrated Canonization
and Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors,
Proceedings of CAV’2001, volume 2102 of Lecture Notes in Computer Science,
pages 246-249. Springer-Verlag, 2001.

7. J.-M. Hullot. Canonical forms and unification. In Proc. 5th Conf. on Automated
Deduction, Les Arcs, France, LNCS 87. Springer-Verlag, July 1980.

8. D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor,
Proceedings of the 8th International Conference on Rewriting Techniques and Ap-
plications, volume 1232. Springer-Verlag, 1997.

9. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University,
1980. available from University Microfilms International.

10. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27:356-364, 1980.

11. R. Nieuwenhuis and A. Oliveras. Congruence closure with integer offsets. 2003.

12. R. Nieuwenhuis and A. Oliveras. Proof-Producing Congruence Closure. In J. Giesl,
editor, Proceedings of RTA’05 (Nara, Japan), volume 3467 of Lecture Notes in
Computer Science, pages 453—468. Springer, 2005.

13. Robert E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(2):583-585, july 1978.

15

