
Rule Based Incremental Congruence Closure
with Commutative Symbols
Sylvain Conchon and Evelyne Contejean

PCRI | LRI (CNRS UMR 8623) | Inria Futurs | Universit�e Paris SudBt. 490, Universit�e Paris-Sud, 91405 Orsay Cedex, Francefconchon,contejeag@lri.fr

Abstract. We present a rule based congruence closure algorithm thatconstructs a \term preserving" union-�nd data structure from a set ofground equations. Starting from a set of two simple inference rules, weshow how our algorithm can be made incremental by adding two extrarules to the original set. Commutative symbols are also handled thanks toa slight modi�cation of the rules. The main originality of this work restson the description level of our framework which is high enough to enjoyrigorous (and self-contained) correctness proofs and low enough so thatthe rules are directly derived from our e�cient OCaml implementation.
1 Introduction
The theory of equality gives the semantics of the equality symbol =. It is de�nedas the smallest re
exive, symmetric and transitive relation that satis�es theLeibniz's rule (also called the congruence axiom): ~a = ~b) f(~a) = f(~b), for anyvectors of terms ~a, ~b and any (uninterpreted) function symbol f .The use of the equality predicate is so ineluctable in logic that the questionof its automated treatment has been studied very early in computer science. Inparticular, the problem of deciding whether a ground equation a = b logicallyfollows from a set E of ground equalities, denoted by a =E b, has been foundcritical in many applications, including mechanical program veri�cation.Algorithms to compute the congruence closure of a set of ground equationsdo exist [5, 10, 13, 2, 12]. Basically, two di�erent approaches have been proposed:the �rst one aims at constructing a union-�nd data structure that stores the �nalequivalence relation on terms [5, 10, 12], while the second one aims at producinga convergent rewriting system which can then be used for checking equalities [13,2]. Nowadays, many automated theorem provers use congruence closure algo-rithms to handle their built-in equality predicate [4, 3, 6]. However, because ofspeci�cities related to their application domains, these provers require some ad-ditional properties on their congruence closure module.First, the backtracking search underlying the architecture of SAT-based the-orem provers enforces an incremental treatment of the set of ground equations.Indeed, for e�ciency reasons, equations are given one by one by the SAT solver to

the equality module which prevents it from realizing a global preliminary treat-ment on them as a set, unless restarting the congruence closure from scratch.Secondly, theorem provers that handle quanti�ed formulas have to �nd rele-vant instances of de�nitions, lemmas or axioms among the set of ground terms inthe formula to be proved. While no satisfactory solution is known to this semi-decidable problem, it is clear that the pattern-matching algorithm underlyingthis process should bene�t from the equalities discovered by the congruence clo-sure algorithm. For instance [9], if it is assumed that a = g(b) and b = g(a), thenP (a; a) can be proved from the axiom 8x; P (g(g(x)); x) by instantiating x by a.We make here an important di�erence between the two approaches describedabove for the construction of congruence closure. The rewriting approach has to�nd the instance by solving the matching problem g(g(x)) = a ^ x = a. Apossible solution is to use the narrowing, which terminates in that case sincethe convergent rewriting system contains only ground rules [7]. On the otherhand, the equivalence classes of the union-fond data structure returned by the�rst approach should help the matcher to �nd that the pattern g(g(x)) coincidewith the term a by an enumeration of the classes. Obviously, and importantly,the matching process will be more e�cient if the union-�nd structure containsonly ground terms from the original set. Furthermore, the matcher should alsobene�t from any extension provided to the congruence closure algorithm. Forinstance, if commutative symbols are handled by the equality module, it shouldbe possible to match the pattern 1 + x against the term a+ 1.Finally, because congruence closure algorithms are at the core of theoremprovers, it is crucial that their design and implementation are correct. For that,their formal description should be �ne-grained enough to model most of themechanisms currently used in the implementation and their correctness proofsshould be as rigorous as possible.
Our Work. We describe a congruence closure algorithm by a set of two simpleinference rules: given a set T of ground terms, our system aims at constructinga union-�nd data structure representing the congruence closure of a set E ofequalities between terms of T . The level of description of our framework is highenough to enjoy a rigorous (and self-contained) correctness proof and low enoughso that the rules are directly derived from our e�cient OCaml implementation.We then show how to extend our algorithm to make it incremental. In thatcase, the set T is empty and the union-�nd data structure returned by theinference rules contains only ground terms contained in the processed equalities.The main originality here is that the incrementality process is clearly separatedfrom the congruence closure part of the system: two extra rules are added to thesystem while keeping the original set intact. This presentation allows us to provethe correctness of the whole system without reproving most of the correctnessfacts relative to the closure mechanism.Last but not least, the modularity of our algorithm allows us to extendit modulo some built-in theories. As an example, we show how commutativesymbols can be handle easily with a very slight modi�cation of the rules. As forthe original algorithm, the union-�nd data structure returned by the frameworks

2

contains only ground terms of the initial set of equations. Taking care of thisfundamental property makes the correctness proof surprisingly di�cult.
Organization of the Paper. We present in section 2 a non-incremental congruenceclosure algorithm based on two simple inference rules and we provide a rigorouscorrectness proof for it. In section 3, we show how to the addition of two newrules to the original system make it incremental. We demonstrate the extensioncapabilities of our approach in section 4 by showing how commutative symbolscan be handle very easily. We conclude in section 5.
2 A Rule Based Congruence Closure Algorithm
Let � be a �nite signature, T be a �nite set of ground ��terms closed bysubterms and E be a set of equalities between terms of T . We denote =E theequational theory induced by E on T (�).We are interested in deciding whether two terms of T are equal modulo Eby a congruence closure algorithm that we shall formalize thanks to a set oftwo inference rules described �gure 1. These rules handle triples h� j � j �i ascon�gurations where:
{ � is used for propagating the discovered equalities by congruence. Moreformally, � is a map, that is a partial injective function, which containsassociations u 7! C where u is a term and C a set of terms. We denote by� (u) = C the fact that � contains u 7! C and by � (u) = ? the fact that �does not contain any association for u. If an equality u = v is discovered ithas to be propagated to terms which have u or v as subterms, namely � (u)and � (v).{ � is a union-�nd data structure which describes the currently known equal-ities; �(u) denotes the representative of u,{ � contains the ground equations which still have to be processed.

Congr h�] f�(a) 7! A;�(b) 7! Bg j � j fa = bg] �ih�] f�0(a) 7! A [Bg j �0 j �0 [�i �(a) 6= �(b)
with ��0 = �+ fa = bg�0 = ff(~a) = f(~b) j f(~a) 2 A ^ f(~b) 2 B ^�0(~a) = �0(~b)g

Remove h� j � j fa = bg] �ih� j � j �i �(a) = �(b)
Fig. 1. A small set of inference rules for CC.

A con�guration K is a T -con�guration when all terms occurring in K are inT . A con�guration K = h� j � j �i reduces to K 0 = h� 0 j �0 j �0i, denoted by
3

K ! K 0, if K 0 can be obtained from K by applying one of the rules of �gure 1(!� is the re
exive transitive closure of !).Contrarily to completion based congruence closure algorithms, our approachdoes not create new terms:
Lemma 1. If K ! K 0 and K is a T -con�guration then so is K 0.

Let K0 = h�T j id j Ei be the initial T -con�guration of the algorithm where�T is the reverted DAG1 of the direct subterms of T with maximal sharing and
id is the union-�nd data structure where all terms of T are pairwise distinct.
Example 1. If T = fa; b; g(a; b); g(g(a; b); b)g then �T = fa 7! fg(a; b)g; b 7!fg(a; b); g(g(a; b); b)g; g(a; b) 7! fg(g(a; b); b)g; g(g(a; b); b) 7! fgg
Theorem 1. The relation ! is terminating from any T -con�guration.
Proof. The measure associated with a T -con�guration h� j � j �i is the pair(c; n) where c is the number of equivalence classes in � and n the number ofequations in �. By lemma 1, h� j � j �i contains only T terms thus applying
Congr on an equation u = v strictly decreases c since u; v 2 T . Finally, anapplication of Remove does not change c and strictly decreases n.
Lemma 2. Any irreducible con�guration obtained from K0 is of the form h� j � j ;i.
Theorem 2 (Correctness). For any irreducible con�guration h�1 j �1 j ;iobtained from K0, for any terms u; v 2 T , u =E v i� �1(u) = �1(v).
Proof. The if direction is proved by the following invariant:

I1(h� j � j �i) = 8u; v 2 T (�);��(u) = �(v)) u =E vu = v 2 �) u =E v
{ I1(K0) is immediate.{ Let us prove that if K ! K 0 and I1(K) then I1(K 0). If K 0 is obtainedfrom K by Remove the result is immediate since � remains unchangedand the new set of equations of K 0 is a subset of that of K. Otherwise,K 0 = h� 0 j �0 = �+ fa = bg j �0 [�i is obtained by Congr.� Let u and v such that �0(u) = �0(v). If �(u) = �(v) the result followsby induction hypothesis. Otherwise �(u) = �(a) and �(v) = �(b)(possibly by exchanging u and v). By induction hypothesis a = b 2� [fa = bg implies a =E b; moreover (again by induction hypothesis)u =E a and v =E b. We conclude by transitivity of =E .� Let u = v 2 � [�0. If u = v 2 � then we conclude by inductionhypothesis. Otherwise, u = f(~a) and v = f(~b) and �0(~a) = �0(~b) henceby the above argument ~a =E ~b. We conclude by the congruence propertyof =E .
1 with respect to its associations

4

Let us now face the only if direction. Let =� be the equational theoryinduced by the set of axioms fu = v j �(u) = �(v)g. We �rst prove the followinginvariants:
I2(h� j � j �i) = 8t1; : : : ; tn 2 T (�);f(t1; : : : ; tn) 2 T) 8i; f(t1; : : : ; tn) 2 � (�(ti))I3(h� j � j �i) = 8u; v 2 T ; u =E v) (u; v) 2 (=� [=�)�

{ I2(K0) holds trivially by construction of �T and since �0 = id.{ Let us prove that if K ! K 0 and I2(K) then I2(K 0). If K 0 is obtained fromK by Remove the result is immediate since � and � remain unchanged.Otherwise, it is obtained by Congr and K = h�] f�(a) 7! A; �(b) 7!Bg j � j fa = bg] �i and K 0 = h�] f�0(a) 7! A [Bg j �0 j �0 [�i.Let f(t1; : : : ; tn) be a term of T . For each ti, we shall distinguish the twofollowing cases:� If �(ti) 6= �(a) and �(ti) 6= �(b) then �0(ti) = �(ti) and � 0(�0(ti)) =� (�(ti)). We conclude by induction hypothesis.� If�(ti) = �(a), by induction hypothesis f(t1; : : : ; tn) 2 A. The propertyholds since �0(ti) = �0(a) and � 0(�0(a)) = A [B.� The case �(ti) = �(b) is symmetrical.{ I3 is obvious.
Now, we shall conclude by proving that for any irreducible con�gurationK1 = h�1 j �1 j ;i and for all terms u; v 2 T if u =�1 v then �1(u) =�1(v).

{ We �rst prove the following congruence property of �1:
If f(~u) 2 T , f(~v) 2 T and �1(~u) = �1(~v) then �1(f(~u)) = �1(f(~v)).
� The case where ~u is syntactically equivalent to ~v is immediate.� Otherwise, we have K0 !� K ! K 0 !� K1, where K is the lastcon�guration such that �(~u) 6= �(~v), and K 0 is �rst one such that�0(~u) = �0(~v). K 0 is obtained from K by applying the rule Congr andthere exists an index i such that �(ui) 6= �(vi), �(uj) = �(vj) forj 6= i, a = b 2 �, �(ui) = �(a), �(vi) = �(b) and �0 = � + fa = bg.Furthermore, �(a) 7! A 2 � and �(b) 7! B 2 � . By I2 on K we havef(~u) 2 A and f(~v) 2 B so the Congr rule will add f(~u) = f(~v) in �0and this equation will eventually be part of �1.{ Finally, we proceed by induction on the size of the proof of u =�1 v, wherethe size of a proof, seen as a sequence of equational steps, is the total sumof the terms' size which occur in it. The result is immediate when u issyntactically equivalent to v. Otherwise, we distinguish the two followingcases:� If u � f(~u) =�1 f(~v) � v has no equational step at the root then~u =�1 ~v and all the subproofs ui =�1 vi are strictly smaller thanu =�1 v. By induction hypothesis, and since T is closed by subterms,we have ui; vi 2 T and �1(ui) = �1(vi). We then conclude by theabove property.

5

� If there is at least an equational step at the root in the proof, the proofhas the following shape u =�1 u0 $��1 v0 =�1 v. By de�nition of =�1 ,�1(u0) = �1(v0) hence u0; v0 2 T . Applying the induction hypothesison the subproofs u =�1 u0 and v =�1 v0 yields �1(u) = �1(u0) and�1(v) = �1(v0). We conclude by transitivity.
Example 2. From K0 = h�T j id j fg(a; b) = agi we can get the followingcon�gurations:
K0 � h�] fa 7! fg(a; b)g; g(a; b) 7! fg(g(a; b); b)gg j id j fg(a; b) = agi! h�] fa 7! fg(a; b); g(g(a; b); b)g j id+ fg(a; b) = ag j fg(a; b) = g(g(a; b); a)gi! h�1 j id+ fg(a; b) = a; g(a; b) = g(g(a; b); a)g j ;i� h�1 j �1 j ;i
So, we have �1(g(g(a; b); b)) = �1(a) which proves that g(a; b) = a impliesg(g(a; b); b) = a.
3 Adding Incrementality
We present in this section an incremental version of our algorithm where theset E is now considered as a sequence of equations and queries between closedterms. A query u ?= v of E is valid if and only if u =E0 v where E0 is the set ofequations of E occurring before the query.Taking the sequential aspect of E into account amounts to replace the unionof sets ([and]) by a sequence operator ; for the third component of thecon�gurations in the rules Congr and Remove of �gure 1.In the sequential case, T is not known at the beginning of the algorithm.Hence �0 is empty and � has to be constructed step by step from the sequenceE. However, it's not su�cient!For instance, if E contains the sequence a = b; f(a) = t; f(b) = u, the non-incremental algorithm will fail to prove that t =E u since the equality a = b isprocessed too early, when f(a) and f(b) are not yet in the structure � .This problem is �xed by the rule AddTerm, described in �gure 2, whichdetermines the new equalities that can be propagated by congruence when pro-cessing a new term. For example, processing the term f(b) in f(b) = u willupdate � and add f(a) = f(b) to � which will eventually trigger the Congrrule. We also add an extra rule Query to validate queries.
Theorem 3. The relation ! is terminating from any con�guration h; j id j �iwhere � is a �nite sequence.
Proof. We de�ne the set T as the set of terms occurring in � and closed by sub-terms. Since � is �nite, T is �nite. The measure associated with a T -con�gurationh� j � j �i is the triple (c; g; n) where c and n are de�ned as in theorem 1. g isthe number of terms u in T such that � (�(u)) is not de�ned. Congr strictlydecreases c. Remove and Query leave c and g unchanged and strictly decreasesn. AddTerm leaves c unchanged and strictly decreases g.

6

AddTerm h�] [v2~af�(v) 7! Cvg j � j C[f(~a)];�ih�] � 0 j � j �0;C[f(~a)];�i � (f(~a)) = ?
where C[f(~a)] denotes an equation or a query containing the term f(~a)
with �� 0 = (f(~a) 7! fg) + f�(v) 7! Cv + f(~a) j v 2 ~ag�0 = � f(~a) = f(~b) �� v 2 ~a; f(~b) 2 Cv ^�(~a) = �(~b) 	

Query h� [f�(a) 7! A;�(b) 7! Bg j � j a ?= b;�ih� [f�(a) 7! A;�(b) 7! Bg j � j �i �(a) = �(b)
Fig. 2. Incremental Congruence Closure Algorithm

Lemma 3. Any irreducible con�guration obtained from K0 is either of the formh� j � j ;i or h� j � j u ?= v;�i with �(u) 6= �(v).
Theorem 4 (Correctness). For any ground terms u; v, the equation u =E vholds i� there is a con�guration h�1 j �1 j ;i reachable from h; j id j E;u ?= vi.
Proof. The if direction is proved by the following invariant:

I1(h� j � j �i) = 8u; v 2 T (�)��(u) = �(v)) u =E vu = v 2 �) u =E v
{ I1(K0) is immediate.{ Let us prove that if K ! K 0 and I1(K) then I1(K 0). By case on the lastrule applied.� If K 0 is obtained by Remove or Congr then the proof of the non-incremental system applies verbatim.� If K 0 is obtained from K by Query the result is immediate since �remains unchanged and the new set of equations of K 0 is equal to thatof K.� If K 0 = h� 0 j � j �0;C[f(~a)];�i is obtained by AddTerm. If �(u) =�(v) the result is immediate by induction hypothesis. Let u = v 2�0;C[f(~a)];�. If u = v 2 C[f(~a)];� then we conclude by inductionhypothesis. Otherwise, u = v 2 �0, u = f(~a), v = f(~b) and �(~a) = �(~b)hence by the above argument ~a =E ~b. We conclude by the congruenceproperty of =E .
Hence, if (�1; �1; ;) is reachable from (;; id; E;u ?= v), the last step hasto be an application of the Query rule on u ?= v, which means that �1(u) =�1(v). We conclude by the invariant I1 that u =E v.Let us now face the only if direction. The equalities associated with a con-�guration K = h� j � j �i are de�ned as

Eq(K) = fu = v j �(u) = �(v)g [fu = v j u = v 2 �g
7

It should be noticed that Eq(K) does not contain the queries occurring in �. We�rst prove the following invariants:
I2(h� j � j �i) = 8t1; : : : ; tn 2 T (�); � (�(f(t1; : : : ; tn))) 6= ?)8i; � (�(ti)) 6= ? ^ f(t1; : : : ; tn) 2 � (�(ti))I3(K) = 8u; v 2 T (�); u =E v) u =Eq(K) v

{ I2(K0) holds trivially since �0 is unde�ned for all terms.{ Let us prove that if K ! K 0 and I2(K) then I2(K 0). By case on the lastrule applied.� Remove: immediate since � and � are unchanged.� Congr: We shall �rst prove that for all terms v, if � 0(�0(v)) is de�nedthen so is � (�(v)).Let us assume that Congr has been applied on the equation a = b. Wedistinguish the two following cases: if �(v) 6= �(a) and �(v) 6= �(b)then � 0(�0(v)) = � (�(v)) else �(v) = �(a) or �(v) = �(b) hence� (�(v))) is de�ned since � (�(a))) and � (�(b))) have to be de�ned inorder to apply Congr.Using the above property, we can apply the induction hypothesis andthen conclude as in the proof of I2 in the standard case.� AddTerm. Let us �rst notice the immediate property P that for allterms v, if � (�(v)) is de�ned then � 0(�0(v)) remains also de�ned and� (�(v)) � � 0(�0(v)). Now, if � 0(�0(f(t1; : : : ; tn))) is de�ned this meansthat either � (�(f(t1; : : : ; tn))) is de�ned or f(t1; : : : ; tn) = f(~a). Wedistinguish these two cases:� If � (�(f(t1; : : : ; tn))) 6= ? then we can apply the induction hypoth-esis and get that � (�(ti)) is de�ned and contains f(t1; : : : ; tn). Weconclude by P (ti).� If f(t1; : : : ; tn) = f(~a) then � (�(ti)) 6= ? since AddTerm applies.By construction f(t1; : : : ; tn) is in � 0(�(ti)) for each ti.{ I3 is immediate since Eq(K0) contains E, and if K ! K 0, then Eq(K) �Eq(K 0).
By the termination property, there exists an irreducible con�guration K1reachable from h; j id j E;u ?= vi which is either of the form h�1 j �1 j ;i orh�1 j �1 j u ?= vi with �1(u) 6= �1(v). The �rst case is immediate. In thelast case, since u =E v and �1 = u ?= v, by I3 we have u =�1 v. Furthermore,since AddTerm does not apply, �1(�1(u)) and �1(�1(v)) are de�ned. Weshall conclude (ad absurdum) by proving that for any irreducible con�gurationK1 = h�1 j �1 j �1i and for all terms u and v in T (�) such that �1(�1(u))and �1(�1(v)) are de�ned and u =�1 v then �1(u) = �1(v).

{ We �rst prove the following congruence property of �1:
For all f(~u) and f(~v) in T (�) such that �1(�1(f(~u))) and �1(�1(f(~v)))are de�ned and �1(~u) = �1(~v) then �1(f(~u)) = �1(f(~v)).

8

� The case where ~u is syntactically equivalent to ~v is immediate.� Otherwise, there exists along the reduction path from K0 to K1 a con-�guration h� j � j �i such that �(~u) = �(~v) holds for the �rst time.We then distinguish two cases. Either � (�(~u)) and � (�(~v)) are bothde�ned and we can conclude as in the standard case, or at least oneof them is unde�ned. Let us assume without loss of generality that inthat case f(~v) is added after f(~u): this means that there exists a con-�guration K 0 = h� 0 j �0 j �0i such that �0(~u) = �0(~v), � 0(�0(f(~u)))is de�ned, � 0(�0(f(~v))) is unde�ned, and K 0 ! K 00 = h� 00 j �00 j �00iwhere � 00(�00(f(~v))) is de�ned. K 00 is necessarily obtained by an appli-cation of AddTerm on f(~v). Since � 0(�0(f(~u))) is de�ned and I2(K 0)holds, we have f(~u) 2 � 0(�0(a)) for all a in ~v. The rule AddTerm hasthus to add the equation f(~u) = f(~v) to �0. The result follows.{ Finally, we proceed by induction on the size of the proof of u =�1 v. Theresult is immediate when u is syntactically equivalent to v. Otherwise, wedistinguish the two following cases:� If u � f(~u) =�1 f(~v) � v has no equational step at the root then~u =�1 ~v and all the subproofs ui =�1 vi are strictly smaller thanu =�1 v. Since I2 holds on K1, �1(�1(a)) is de�ned for all a in ~u or~v. By induction hypothesis �1(ui) = �1(vi). We then conclude by theabove property.� If there is an equational step at the root in the proof, the proof hasthe following shape u =�1 u0 $��1 v0 =�1 v. By de�nition of =�1 ,�1(u0) = �1(v0) hence there must exist two con�gurationsK = h� j� j �iand K 0 = h� 0 j �0 j �0i such that K ! K 0, �(u0) 6= �(v0) and�0(u0) = �0(v0). In that case, K 0 is obtained from K by an applicationof Congr on an equation u00 = v00 where �(u0) = �(u00), �(v0) = �(v00)and � (�(u00)) and � (�(v00)) are de�ned. Therefore, by P , �1(�1(u0))and �1(�1(v0)) are also de�ned. Applying the induction hypothesis onthe subproofs u =�1 u0 and v =�1 v0 yields �1(u) = �1(u0) and�1(v) = �1(v0). We conclude by transitivity.
Example 3. From K0 = h; j id j �0i where �0 is a = b; f(a) = t; f(b) = u; t ?= uwe can get the following con�gurations:
Ki h� j � j �i RuleK0 h; j id j a=b; f(a)= t; f(b)=u; t ?= ui AddTerm�on a; bK1 ha 7! fg; b 7! fg j id j a=b; f(a)= t; f(b)=u; t ?= ui CongrK2 h�2(b) 7! fg j fa=bg+ id j f(a)= t; f(b)=u; t ?= ui AddTerm�on f(a); tK3 h�2(b) 7! ff(a)g; : : : j �2 j �2i CongrK4 h�4(b) 7! ff(a)g; : : : j ff(a)= tg+�2 j f(b)=u; t ?= ui AddTerm on f(b)K5 h: : : j �4 j f(a)=f(b); f(b)=u; t ?= ui Congr�AddTerm�

K6 h: : : j ft=ug+ : : : j t ?= ui QueryK7 h: : : j ft=ug+ : : : j ;i
9

4 Handling Commutative Symbols
Let �C be the subset of � corresponding to the commutative symbols. Wedenote by =E;C the equational theory induced by E and the commutativity ofthe symbols of �C .We suppose given�T (�) a total ordering on the terms of T (�) and we de�ne afunction which sorts vectors of T (�) only if its extra parameter is a commutativesymbol. More formally,

sort(f; ~u) = if f 2 � n�C then ~u else (~u sorted by �T (�))
In order to handle commutative symbols in the incremental algorithm2, weonly have to modify the rules Congr and AddTerm by changing their de�ni-tions of the set �0 as follows:

Congr:�0 = ff(~a) = f(~b) j f(~a) 2 A ^ f(~b) 2 B ^ sort(f;�0(~a)) = sort(f;�0(~b))g
AddTerm:�0 = ff(~a) = f(~b) j v 2 ~a; f(~b) 2 Cv ^ sort(f;�(~a)) = sort(f;�(~b))g
It is obvious that the termination of ! is preserved since sorting does nota�ect the number of equivalence classes of � and does not create new terms.Surprisingly, the correctness proof is made di�cult by the fact that in or-der to keep the \term preserving" property of �, we restrict the new equalitiesintroduced in � to terms de�ned in � . For instance, if the symbol + is com-mutative, the proof of a1 + (a2 + a3) =C (a3 + a2) + a1 needs a middle term(either a1 + (a3 + a2) or (a2 + a3) + a1) which is not in the original set ofterms. We thus have to prove that our algorithm can detect that the querya1 + (a2 + a3) ?= (a3 + a2) + a1 is valid without using this middle term.

Theorem 5 (Correctness). For any ground terms u; v, the equation u =E;C vholds i� there is a con�guration h�1 j �1 j ;i reachable from h; j id j E;u ?= vi.
Proof. The proof has the same structure as in section 3. We prove the invariantsI1 and I2 de�ned as in the incremental case by replacing =E by =E;C . I3 has tobe slightly modi�ed by adding some more equations to the set Eq(K) in orderto take care of commutativity.The proof of the if direction applies almost verbatim. The only di�erencein the proof of I1 is in the induction step where the new equation f(u1; u2) =f(v1; v2) is added in �0 by Congr or AddTerm because f is a commutativesymbol and sort(f;�0(u1; u2)) = sort(f;�0(v1; v2)). This means that either�0(u1) = �0(v1) ^ �0(u2) = �0(v2) or �0(u1) = �0(v2) ^ �0(u2) = �0(v1). In
2 Handling commutative symbols in the non-incremental case would require to modifythe algorithm in such way that it would amount to add a kind of incrementality inthe Congr rule. Incrementality is needed when a proof u =E;C v uses only C steps.

10

the �rst case, we conclude as in the non-commutative case. In the second case,we get that u1 =E;C v2 and u2 =E;C v1, hence
f(u1; u2) =E;C f(v2; v1) =E;C f(v1; v2)

since the equality f(x; y) = f(y; x) 2 C � E [C.Let us now face the only if direction. The set of equations associated to acon�guration K = h� j � j �i with respect to a set of ground terms G is
EqG(K) = fu = v j �(u) = �(v)g [fu = v j u = v 2 �g [8>>>><

>>>>:
f(u1; u2) = f(u2; u1)

����������

f 2 �C ;0
BB@
� (�(ui)) 6= ? _ui is a subterm of a term in G _ui occurs as a subterm in anon-trivial equation of �

1
CCA

9>>>>=
>>>>;

It should be noticed that the queries and the equations u = u of � do nota�ect the de�nition of Eq. I2 is de�ned as in the incremental case, and
I3(K) = 8u; v 2 T (�); u =E;C v) u =Eqfu;vg(K) v

The proof of I2 is exactly the same as in the standard case, since the modi�-cation does not a�ect the �rst two components of the con�gurations. However,the invariant I3 is no longer obvious as in section 3.
{ I3(K0) is 8u; v 2 T u =E;C v) u =Eqfu;vg(K0) v, where
Eqfu;vg(K0) = fa = b j �(a) = �(b)g [fa = b j a = b 2 Eg [8>><

>>:f(u1; u2) = f(u2; u1)
��������
f 2 �C ;0
@ui is a subterm of u or v _ui occurs as a subterm in anon-trivial equation of E

1
A
9>>=
>>;

I3(K0) is proved by induction on the size of the sequence of equational steps� of u =E;C v: If � has length 0 then u and v are syntactically equal andthe result is immediate. Otherwise,� If there is no equational step at the root then u = f(u1; : : : ; un), v =f(v1; : : : ; vn) and for all i 2 f1::ng there is a proof �i of ui =E;C viobtained by projection of �. Hence each �i is strictly smaller than �. So,by induction hypothesis, ui =Eqfui;vig(K0) vi. Since ui and vi are respec-tively subterms of u and v, it is clear that Eqfui;vig(K0) � Eqfu;vg(K0).Hence ui =Eqfu;vg(K0) vi and by the congruence property of equationaltheories, we get that u =Eqfu;vg(K0) v.� If there is at least an equational step at the root using an equation ofE, the proof � has the following shape u $�E;C u0 $�E v0 $�E;C v. The
11

sub-proofs �1 of u =E;C u0 and �2 of v0 =E;C v are smaller than �:by induction hypothesis, u =Eqfu;u0g(K0) u0 and v0 =Eqfv0;vg(K0) v. Sincethe equation u0 = v0 belongs to E, the sets fu0 = v0g, Eqfu;u0g(K0) andEqfv0;vg(K0) are all included in Eqfu;vg(K0). We conclude by transitivity.� If there is exactly one equational step at the root, which is a C-step,then the proof � is of the form:
u � f(u1; u2)$(6=�)�E;C f(u01; u02)$�E;C f(u02; u01)$(6=�)�E;C v � f(v1; v2)

and there exist �1 : u1 =E;C u01 =E;C v2 and �2 : u2 =E;C u02 =E;C v1obtained by projection of �. By induction hypothesis on �1 and �2,u1 =Eqfu1;v2g(K0) v2 and u2 =Eqfu1;v2g(K0) v1. Since u1; u2; v1 and v2are subterms of u or v, Eqfu1;v2g(K0) and Eqfu2;v1g(K0) are included inEqfu;vg(K0). Moreover by construction, Eqfu;vg(K0) contains the equa-tion f(u1; u2) = f(u2; u1). u and v have the following proof of Eqfu;vg(K0)-equality:
u � f(u1; u2)$�

Eqfu;vg(K0) f(u2; u1)$�1 f(u2; v2)$�2 f(v1; v2) � v
� If there are at least two equational C-steps at the root, then the proof� is of the form:
u � f(u1; u2) (6=�)� !E;C f(u01; u02) �$C f(u02; u01) (6=�)� !E;C f(u002 ; u001) �$C f(u001 ; u002) � !E;C v
where u1 =E;C u001 and u2 =E;C u002 . We can rebuild a strictly smallermiddle proof u � f(u1; u2) =E;C f(u001 ; u002) =E;C v to which we canapply the induction hypothesis.{ The induction step showing that if K ! K 0 and I3(K) then I3(K 0) followsimmediately from the fact that EqG(K) � EqG(K 0):� Query : obviously, a query in � does not a�ect the de�nition of EqG ,hence EqG(K) = EqG(K 0).� Remove : If this rule removes an equation u = v in �, it was alreadyin �. If u and v are syntactically equal, the equation u = v is trivial,hence does not induce any commutative equation in the third part ofEqG(K). Otherwise, the induced equations are still in EqG(K 0) since uand v have to be added by the rule AddTerm before the rule Congradded an equation equivalent to u = v to�, hence � (�(u)) and � (�(v))are de�ned and by I2, the subterms of u and v enjoy the same property.As a conclusion, EqG(K) = EqG(K 0).� Congr : If this rule moves an equation u = v from � to �, this meansthat � (�(u)) and � (�(v)) are de�ned; we can conclude as above.� AddTerm : This rule increases � and makes � (�()) de�ned on a largerset of terms, hence it is obvious that EqG(K) � EqG(K 0).

By the termination property, there exists an irreducible con�guration K1reachable from h; j id j E;u ?= vi which is either of the form h�1 j �1 j ;i or
12

h�1 j �1 j u ?= vi with �1(u) 6= �1(v). The �rst case is immediate. In thelast case, since u =E;C v and �1 = u ?= v, by I3 we have u =Eqfu;vg(K1) v.Furthermore, since AddTerm does not apply �1(�1(u)) and �1(�1(v))are de�ned and by I2, this is also the case for the subterms of u and v.
Eqfu;vg(K1) = fa = b j �1(a) = �1(b)g [�f(u1; u2) = f(u2; u1) ��f 2 �C ; ��1(�1(ui)) 6= ? �	= Eq;(K1)

We shall conclude (ad absurdum) by proving that for any irreducible con-�guration K1 = h�1 j �1 j �1i, for all terms u and v in T (�) such that�1(�1(u)) and �1(�1(v)) are de�ned, if u =Eq;(K1) v then�1(u) = �1(v).
{ As in the standard case, we �rst need a congruence property on �1:

For all f(~u) and f(~v) in T (�) such that �1(�1(f(~u))) and �1(�1(f(~v)))are de�ned and sort(f;�1(~u)) = sort(f;�1(~v)) then�1(f(~u)) = �1(f(~v)).
� The case where ~u is syntactically equivalent to ~v is immediate.� Otherwise, there exists along the reduction path from K0 to K1 a con-�guration h� j � j �i such that sort(f;�(~u)) = sort(f;�(~v)) holdsfor the �rst time. We then distinguish two cases. Either � (�(~u)) and� (�(~v)) are both de�ned or at least one of them is unde�ned. In the�rst case, the rule Congr will add the equation f(~u) = f(~v) to �, andthis equation will eventually become a part of �1. In the second case,let us assume without loss of generality that f(~v) is added after f(~u):this means that there exists a con�guration K 0 = h� 0 j �0 j �0i such that
sort(f;�0(~u)) = sort(f;�0(~v)), � 0(�0(f(~u))) is de�ned, � 0(�0(f(~v)))is unde�ned, and K 0 ! K 00 = h� 00 j �00 j �00i where � 00(�00(f(~v)))is de�ned. K 00 is necessarily obtained by an application of AddTermon f(~v). Since � 0(�0(f(~u))) is de�ned and I2(K 0) holds, we have f(~u) 2� 0(�0(a)) for all a in ~v. The rule AddTerm has thus to add the equationf(~u) = f(~v) to �0. The result follows.{ Finally, we proceed by induction on the size of the proof of u =Eq;(K1) v.The result is immediate when u is syntactically equivalent to v. Otherwise,we distinguish the two following cases:� If u � f(~u) =Eq;(K1) f(~v) � v has no equational step at the root then~u =Eq;(K1) ~v and all the subproofs ui =Eq;(K1) vi are strictly smallerthan u =Eq;(K1) v. Since I2 holds on K1, �1(�1(a)) is de�ned forall a in ~u or ~v. By induction hypothesis �1(ui) = �1(vi). We thenconclude by the above property.� If there is at least an equational step at the root using an equation of�1,the proof � has the following shape u$�

Eq;(K1) u0 $��1 v0 $�
Eq;(K1) v,where �1(u0) = �1(v0). The sub-proofs �1 of u =Eq;(K1) u0 and �2 ofv0 =Eq;(K1) v are smaller than � and �1(�1(u0)) and �1(�1(v0)) arede�ned (indeed the rule Congr cannot add to � an equation equivalentto u0 = v0 if �1(�1(u0)) or �1(�1(v0)) are not de�ned): by induction

13

hypothesis, �1(u) = �1(u0) and �1(v0) = �1(v). We conclude bytransitivity.� If there is exactly one equational step at the root, which is a C-step,then the proof � is of the form:
u � f(u1; u2)$(6=�)�

Eq;(K1) f(u01; u02)$�C f(u02; u01)$(6=�)�
Eq;(K1) v � f(v1; v2)

and there exist �1 : u1 =Eq;(K1) u01 =Eq;(K1) v2 and �2 : u2 =Eq;(K1)u02 =Eq;(K1) v1 obtained by projection of �. By I2(K1), since u1; u2; v1and v2 are subterms of u or v, �1(�1()) is de�ned on them, so wecan apply the induction hypothesis and get that �1(u1) = �1(v2) and�1(u2) = �1(v1). Hence sort(f;�1(u1; u2)) = sort(f;�1(v1; v2))and we conclude by the above property.� If there are at least two equational C-steps at the root, then the proof� is of the form:
u � f(u1; u2) !(6=�)�

Eq;(K1) f(u01; u02) $�C f(u02; u01) !(6=�)�
Eq;(K1) f(u002 ; u001)$�C f(u001 ; u002) !�

Eq;(K1) v
where u1 =Eq;(K1) u001 and u2 =Eq;(K1) u002 . We can rebuild a strictlysmaller middle proof u � f(u1; u2) =Eq;(K1) f(u001 ; u002) =Eq;(K1) v towhich we can apply the induction hypothesis.

Example 4. From K0 = h; j id j �0i where �0 is a1+ (a2+ a3) ?= (a3+ a2) + a1we can get the following con�gurations:
Ki h� j � j �i RuleK0 h; j id j �0[a1 + (a2 + a3)]i AddTerm�

K1 ha2 7! fa2 + a3g; : : : j id j �0[a3 + a2]i AddTermK2 ha2 7! fa2 + a3; a3 + a2g; : : : j id j a2 + a3 = a3 + a2;�0i CongrK3 ha1 7! f: : :g; : : : j fa2 + a3 = a3 + a2g+ id j �0[(a3 + a2) + a1]i AddTermK4 h�4 j �3 j a1 + (a2 + a3) = (a3 + a2) + a1;�0i CongrK5 h�5 j fa1 + (a2 + a3) = (a3 + a2) + a1g+�3 j �0i QueryK6 h�5 j �5 j ;i
5 Conclusion and Related Works
We have presented an incremental rule based congruence closure algorithm forwhich rigorous correctness proofs are given. Following the original works on thisalgorithm, our inference system constructs a union-�nd data structure that con-tains only ground terms from the initial set of equalities. The way our frameworkhas been easily extended to handle commutative symbols is promising and weleave for future works a generalized approach for handling others theories.

14

Related Works. Original papers [5, 10, 13] have presented non-incremental con-gruence closure algorithms using pseudo-code notations. Our �rst inference sys-tem can be seen as a clean reformulation of these algorithms for which a rigorouscorrectness proof is given.Completion like methods [2, 1, 8] demysti�ed congruence closure algorithmsusing the framework of ground completion. While this approach allows for rig-orous correctness proofs, it fails to produce a union-�nd data structure used bythe pattern-matching algorithms underlying automated theorem provers.Recent works [12, 11] have presented an incremental congruence closure algo-rithm using pseudo-code notations which is not modular with respect to incre-mentality and for which it is then more di�cult to produce proofs. Furthermore,the initial Currifying transformation applied to the terms makes di�cult thetreatment of commutative symbols.
References
1. L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence clo-sure modulo associativity and commutativity. In H. Kirchner and C. Ringeissen,editors, Proceedings of FroCoS 2000 Nancy (France), volume 1794, pages 245{259.Springer-Verlag, 2000.2. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal

of Automated Reasoning, 31(2):129{168, 2003.3. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperatingvalidity checker. In R. Alur and D. A. Peled, editors, 16th International Confer-
ence on Computer Aided Veri�cation, volume 3114 of Lecture Notes in Computer
Science, pages 515{518, Boston, MA, USA, July 2004. Springer-Verlag.4. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for programchecking. J. ACM, 52(3):365{473, 2005.5. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressionsproblem. J. ACM, 27(4):771{785, 1980.6. J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canonizationand Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors,
Proceedings of CAV'2001, volume 2102 of Lecture Notes in Computer Science,pages 246{249. Springer-Verlag, 2001.7. J.-M. Hullot. Canonical forms and uni�cation. In Proc. 5th Conf. on Automated
Deduction, Les Arcs, France, LNCS 87. Springer-Verlag, July 1980.8. D. Kapur. Shostak's congruence closure as completion. In H. Comon, editor,
Proceedings of the 8th International Conference on Rewriting Techniques and Ap-
plications, volume 1232. Springer-Verlag, 1997.9. G. Nelson. Techniques for Program Veri�cation. PhD thesis, Stanford University,1980. available from University Micro�lms International.10. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27:356{364, 1980.11. R. Nieuwenhuis and A. Oliveras. Congruence closure with integer o�sets. 2003.12. R. Nieuwenhuis and A. Oliveras. Proof-Producing Congruence Closure. In J. Giesl,editor, Proceedings of RTA'05 (Nara, Japan), volume 3467 of Lecture Notes in
Computer Science, pages 453{468. Springer, 2005.13. Robert E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(2):583{585, july 1978.

15

