- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a(x,y) -> b(x,b(0,c(y))) [2] c(b(y,c(x))) -> c(c(b(a(0,0),y))) [3] b(y,0) -> y Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { b(y,0) >= y ; c(b(y,c(x))) >= c(c(b(a(0,0),y))) ; a(x,y) >= b(x,b(0,c(y))) ; Marked_c(b(y,c(x))) >= Marked_c(b(a(0,0),y)) ; Marked_c(b(y,c(x))) >= Marked_c(c(b(a(0,0),y))) ; Marked_c(b(y,c(x))) >= Marked_a(0,0) ; Marked_a(x,y) >= Marked_c(y) ; } + Disjunctions:{ { Marked_c(b(y,c(x))) > Marked_c(b(a(0,0),y)) ; } { Marked_c(b(y,c(x))) > Marked_c(c(b(a(0,0),y))) ; } { Marked_c(b(y,c(x))) > Marked_a(0,0) ; } { Marked_a(x,y) > Marked_c(y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: b(y,0) >= y constraint: c(b(y,c(x))) >= c(c(b(a(0,0),y))) constraint: a(x,y) >= b(x,b(0,c(y))) constraint: Marked_c(b(y,c(x))) >= Marked_c(b(a(0,0),y)) constraint: Marked_c(b(y,c(x))) >= Marked_c(c(b(a(0,0),y))) constraint: Marked_c(b(y,c(x))) >= Marked_a(0,0) constraint: Marked_a(x,y) >= Marked_c(y) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { b(y,0) >= y ; c(b(y,c(x))) >= c(c(b(a(0,0),y))) ; a(x,y) >= b(x,b(0,c(y))) ; Marked_c(b(y,c(x))) >= Marked_c(b(a(0,0),y)) ; Marked_c(b(y,c(x))) >= Marked_c(c(b(a(0,0),y))) ; } + Disjunctions:{ { Marked_c(b(y,c(x))) > Marked_c(b(a(0,0),y)) ; } { Marked_c(b(y,c(x))) > Marked_c(c(b(a(0,0),y))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: b(y,0) >= y constraint: c(b(y,c(x))) >= c(c(b(a(0,0),y))) constraint: a(x,y) >= b(x,b(0,c(y))) constraint: Marked_c(b(y,c(x))) >= Marked_c(b(a(0,0),y)) constraint: Marked_c(b(y,c(x))) >= Marked_c(c(b(a(0,0),y))) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] a(x,y) -> b(x,b(0,c(y))) [2] c(b(y,c(x))) -> c(c(b(a(0,0),y))) [3] b(y,0) -> y , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ b ] (X0,X1) = 1*X1 + 1*X0; [ c ] (X0) = 2; [ Marked_a ] (X0,X1) = 2*X1; [ 0 ] () = 0; [ Marked_c ] (X0) = 2*X0; [ a ] (X0,X1) = 1*X0 + 2; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ b ] (X0,X1) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]*X1 + [ [ 1 , 0 , 0 ] [ 0 , 1 , 0 ] [ 1 , 0 , 1 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ c ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ 0 ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_c ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ a ] (X0,X1) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 1 , 0 , 0 ] [ 0 , 1 , 0 ] [ 1 , 0 , 1 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; ]} ]} ]} ]} ]} Cime worked for 4.486078 seconds (real time) Cime Exit Status: 0