- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] c(c(b(c(x)))) -> b(a(0,c(x))) [2] c(c(x)) -> b(c(b(c(x)))) [3] a(0,x) -> c(c(x)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a(0,x) >= c(c(x)) ; c(c(b(c(x)))) >= b(a(0,c(x))) ; c(c(x)) >= b(c(b(c(x)))) ; Marked_a(0,x) >= Marked_c(c(x)) ; Marked_a(0,x) >= Marked_c(x) ; Marked_c(c(b(c(x)))) >= Marked_a(0,c(x)) ; } + Disjunctions:{ { Marked_a(0,x) > Marked_c(c(x)) ; } { Marked_a(0,x) > Marked_c(x) ; } { Marked_c(c(b(c(x)))) > Marked_a(0,c(x)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: a(0,x) >= c(c(x)) constraint: c(c(b(c(x)))) >= b(a(0,c(x))) constraint: c(c(x)) >= b(c(b(c(x)))) constraint: Marked_a(0,x) >= Marked_c(c(x)) constraint: Marked_a(0,x) >= Marked_c(x) constraint: Marked_c(c(b(c(x)))) >= Marked_a(0,c(x)) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a(0,x) >= c(c(x)) ; c(c(b(c(x)))) >= b(a(0,c(x))) ; c(c(x)) >= b(c(b(c(x)))) ; Marked_a(0,x) >= Marked_c(c(x)) ; Marked_c(c(b(c(x)))) >= Marked_a(0,c(x)) ; } + Disjunctions:{ { Marked_a(0,x) > Marked_c(c(x)) ; } { Marked_c(c(b(c(x)))) > Marked_a(0,c(x)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: a(0,x) >= c(c(x)) constraint: c(c(b(c(x)))) >= b(a(0,c(x))) constraint: c(c(x)) >= b(c(b(c(x)))) constraint: Marked_a(0,x) >= Marked_c(c(x)) constraint: Marked_c(c(b(c(x)))) >= Marked_a(0,c(x)) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] c(c(b(c(x)))) -> b(a(0,c(x))) [2] c(c(x)) -> b(c(b(c(x)))) [3] a(0,x) -> c(c(x)) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ b ] (X0) = 1*X0; [ Marked_a ] (X0,X1) = 1*X1 + 2*X0; [ 0 ] () = 1; [ a ] (X0,X1) = 1*X1 + 1*X0 + 3; [ Marked_c ] (X0) = 1*X0; [ c ] (X0) = 1*X0 + 2; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ b ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 1 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_a ] (X0,X1) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ 0 ] () = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]; [ a ] (X0,X1) = [ [ 0 , 0 , 0 ] [ 1 , 1 , 0 ] [ 0 , 0 , 1 ] ]*X1 + [ [ 0 , 0 , 1 ] [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]; [ Marked_c ] (X0) = [ [ 1 , 1 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ c ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 1 ] [ 1 , 1 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; removing [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} ]} ]} Cime worked for 1.368095 seconds (real time) Cime Exit Status: 0