- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a__a -> a__c [2] a__b -> a__c [3] a__c -> e [4] a__k -> l [5] a__d -> m [6] a__a -> a__d [7] a__b -> a__d [8] a__c -> l [9] a__k -> m [10] a__A -> a__h(a__f(a__a),a__f(a__b)) [11] a__h(X,X) -> a__g(mark(X),mark(X),a__f(a__k)) [12] a__g(d,X,X) -> a__A [13] a__f(X) -> a__z(mark(X),X) [14] a__z(e,X) -> mark(X) [15] mark(A) -> a__A [16] mark(a) -> a__a [17] mark(b) -> a__b [18] mark(c) -> a__c [19] mark(d) -> a__d [20] mark(k) -> a__k [21] mark(z(X1,X2)) -> a__z(mark(X1),X2) [22] mark(f(X)) -> a__f(mark(X)) [23] mark(h(X1,X2)) -> a__h(mark(X1),mark(X2)) [24] mark(g(X1,X2,X3)) -> a__g(mark(X1),mark(X2),mark(X3)) [25] mark(e) -> e [26] mark(l) -> l [27] mark(m) -> m [28] a__A -> A [29] a__a -> a [30] a__b -> b [31] a__c -> c [32] a__d -> d [33] a__k -> k [34] a__z(X1,X2) -> z(X1,X2) [35] a__f(X) -> f(X) [36] a__h(X1,X2) -> h(X1,X2) [37] a__g(X1,X2,X3) -> g(X1,X2,X3) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a__c >= e ; a__c >= l ; a__c >= c ; a__a >= a__c ; a__a >= a__d ; a__a >= a ; a__b >= a__c ; a__b >= a__d ; a__b >= b ; a__k >= l ; a__k >= m ; a__k >= k ; a__d >= m ; a__d >= d ; a__h(X,X) >= a__g(mark(X),mark(X),a__f(a__k)) ; a__h(X1,X2) >= h(X1,X2) ; a__f(X) >= a__z(mark(X),X) ; a__f(X) >= f(X) ; a__A >= a__h(a__f(a__a),a__f(a__b)) ; a__A >= A ; a__g(d,X,X) >= a__A ; a__g(X1,X2,X3) >= g(X1,X2,X3) ; mark(e) >= e ; mark(l) >= l ; mark(m) >= m ; mark(d) >= a__d ; mark(A) >= a__A ; mark(a) >= a__a ; mark(b) >= a__b ; mark(c) >= a__c ; mark(k) >= a__k ; mark(z(X1,X2)) >= a__z(mark(X1),X2) ; mark(f(X)) >= a__f(mark(X)) ; mark(h(X1,X2)) >= a__h(mark(X1),mark(X2)) ; mark(g(X1,X2,X3)) >= a__g(mark(X1),mark(X2),mark(X3)) ; a__z(e,X) >= mark(X) ; a__z(X1,X2) >= z(X1,X2) ; Marked_a__g(d,X,X) >= Marked_a__A ; Marked_a__h(X,X) >= Marked_a__g(mark(X),mark(X),a__f(a__k)) ; Marked_a__h(X,X) >= Marked_a__f(a__k) ; Marked_a__h(X,X) >= Marked_mark(X) ; Marked_a__f(X) >= Marked_a__z(mark(X),X) ; Marked_a__f(X) >= Marked_mark(X) ; Marked_a__z(e,X) >= Marked_mark(X) ; Marked_a__A >= Marked_a__h(a__f(a__a),a__f(a__b)) ; Marked_a__A >= Marked_a__f(a__a) ; Marked_a__A >= Marked_a__f(a__b) ; Marked_mark(A) >= Marked_a__A ; Marked_mark(z(X1,X2)) >= Marked_a__z(mark(X1),X2) ; Marked_mark(z(X1,X2)) >= Marked_mark(X1) ; Marked_mark(f(X)) >= Marked_a__f(mark(X)) ; Marked_mark(f(X)) >= Marked_mark(X) ; Marked_mark(h(X1,X2)) >= Marked_a__h(mark(X1),mark(X2)) ; Marked_mark(h(X1,X2)) >= Marked_mark(X1) ; Marked_mark(h(X1,X2)) >= Marked_mark(X2) ; Marked_mark(g(X1,X2,X3)) >= Marked_a__g(mark(X1),mark(X2),mark(X3)) ; Marked_mark(g(X1,X2,X3)) >= Marked_mark(X1) ; Marked_mark(g(X1,X2,X3)) >= Marked_mark(X2) ; Marked_mark(g(X1,X2,X3)) >= Marked_mark(X3) ; } + Disjunctions:{ { Marked_a__g(d,X,X) > Marked_a__A ; } { Marked_a__h(X,X) > Marked_a__g(mark(X),mark(X),a__f(a__k)) ; } { Marked_a__h(X,X) > Marked_a__f(a__k) ; } { Marked_a__h(X,X) > Marked_mark(X) ; } { Marked_a__f(X) > Marked_a__z(mark(X),X) ; } { Marked_a__f(X) > Marked_mark(X) ; } { Marked_a__z(e,X) > Marked_mark(X) ; } { Marked_a__A > Marked_a__h(a__f(a__a),a__f(a__b)) ; } { Marked_a__A > Marked_a__f(a__a) ; } { Marked_a__A > Marked_a__f(a__b) ; } { Marked_mark(A) > Marked_a__A ; } { Marked_mark(z(X1,X2)) > Marked_a__z(mark(X1),X2) ; } { Marked_mark(z(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(f(X)) > Marked_a__f(mark(X)) ; } { Marked_mark(f(X)) > Marked_mark(X) ; } { Marked_mark(h(X1,X2)) > Marked_a__h(mark(X1),mark(X2)) ; } { Marked_mark(h(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(h(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(g(X1,X2,X3)) > Marked_a__g(mark(X1),mark(X2),mark(X3)) ; } { Marked_mark(g(X1,X2,X3)) > Marked_mark(X1) ; } { Marked_mark(g(X1,X2,X3)) > Marked_mark(X2) ; } { Marked_mark(g(X1,X2,X3)) > Marked_mark(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: a__c >= e constraint: a__c >= l constraint: a__c >= c constraint: a__a >= a__c constraint: a__a >= a__d constraint: a__a >= a constraint: a__b >= a__c constraint: a__b >= a__d constraint: a__b >= b constraint: a__k >= l constraint: a__k >= m constraint: a__k >= k constraint: a__d >= m constraint: a__d >= d constraint: a__h(X,X) >= a__g(mark(X),mark(X),a__f(a__k)) constraint: a__h(X1,X2) >= h(X1,X2) constraint: a__f(X) >= a__z(mark(X),X) constraint: a__f(X) >= f(X) constraint: a__A >= a__h(a__f(a__a),a__f(a__b)) constraint: a__A >= A constraint: a__g(d,X,X) >= a__A constraint: a__g(X1,X2,X3) >= g(X1,X2,X3) constraint: mark(e) >= e constraint: mark(l) >= l constraint: mark(m) >= m constraint: mark(d) >= a__d constraint: mark(A) >= a__A constraint: mark(a) >= a__a constraint: mark(b) >= a__b constraint: mark(c) >= a__c constraint: mark(k) >= a__k constraint: mark(z(X1,X2)) >= a__z(mark(X1),X2) constraint: mark(f(X)) >= a__f(mark(X)) constraint: mark(h(X1,X2)) >= a__h(mark(X1),mark(X2)) constraint: mark(g(X1,X2,X3)) >= a__g(mark(X1),mark(X2),mark(X3)) constraint: a__z(e,X) >= mark(X) constraint: a__z(X1,X2) >= z(X1,X2) constraint: Marked_a__g(d,X,X) >= Marked_a__A constraint: Marked_a__h(X,X) >= Marked_a__g(mark(X),mark(X),a__f(a__k)) constraint: Marked_a__h(X,X) >= Marked_a__f(a__k) constraint: Marked_a__h(X,X) >= Marked_mark(X) constraint: Marked_a__f(X) >= Marked_a__z(mark(X),X) constraint: Marked_a__f(X) >= Marked_mark(X) constraint: Marked_a__z(e,X) >= Marked_mark(X) constraint: Marked_a__A >= Marked_a__h(a__f(a__a),a__f(a__b)) constraint: Marked_a__A >= Marked_a__f(a__a) constraint: Marked_a__A >= Marked_a__f(a__b) constraint: Marked_mark(A) >= Marked_a__A constraint: Marked_mark(z(X1,X2)) >= Marked_a__z(mark(X1),X2) constraint: Marked_mark(z(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(f(X)) >= Marked_a__f(mark(X)) constraint: Marked_mark(f(X)) >= Marked_mark(X) constraint: Marked_mark(h(X1,X2)) >= Marked_a__h(mark(X1),mark(X2)) constraint: Marked_mark(h(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(h(X1,X2)) >= Marked_mark(X2) constraint: Marked_mark(g(X1,X2,X3)) >= Marked_a__g(mark(X1),mark(X2),mark(X3)) constraint: Marked_mark(g(X1,X2,X3)) >= Marked_mark(X1) constraint: Marked_mark(g(X1,X2,X3)) >= Marked_mark(X2) constraint: Marked_mark(g(X1,X2,X3)) >= Marked_mark(X3) APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a__c >= e ; a__c >= l ; a__c >= c ; a__a >= a__c ; a__a >= a__d ; a__a >= a ; a__b >= a__c ; a__b >= a__d ; a__b >= b ; a__k >= l ; a__k >= m ; a__k >= k ; a__d >= m ; a__d >= d ; a__h(X,X) >= a__g(mark(X),mark(X),a__f(a__k)) ; a__h(X1,X2) >= h(X1,X2) ; a__f(X) >= a__z(mark(X),X) ; a__f(X) >= f(X) ; a__A >= a__h(a__f(a__a),a__f(a__b)) ; a__A >= A ; a__g(d,X,X) >= a__A ; a__g(X1,X2,X3) >= g(X1,X2,X3) ; mark(e) >= e ; mark(l) >= l ; mark(m) >= m ; mark(d) >= a__d ; mark(A) >= a__A ; mark(a) >= a__a ; mark(b) >= a__b ; mark(c) >= a__c ; mark(k) >= a__k ; mark(z(X1,X2)) >= a__z(mark(X1),X2) ; mark(f(X)) >= a__f(mark(X)) ; mark(h(X1,X2)) >= a__h(mark(X1),mark(X2)) ; mark(g(X1,X2,X3)) >= a__g(mark(X1),mark(X2),mark(X3)) ; a__z(e,X) >= mark(X) ; a__z(X1,X2) >= z(X1,X2) ; Marked_a__g(d,X,X) >= Marked_a__A ; Marked_a__h(X,X) >= Marked_a__g(mark(X),mark(X),a__f(a__k)) ; Marked_a__A >= Marked_a__h(a__f(a__a),a__f(a__b)) ; } + Disjunctions:{ { Marked_a__g(d,X,X) > Marked_a__A ; } { Marked_a__h(X,X) > Marked_a__g(mark(X),mark(X),a__f(a__k)) ; } { Marked_a__A > Marked_a__h(a__f(a__a),a__f(a__b)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { a__c >= e ; a__c >= l ; a__c >= c ; a__a >= a__c ; a__a >= a__d ; a__a >= a ; a__b >= a__c ; a__b >= a__d ; a__b >= b ; a__k >= l ; a__k >= m ; a__k >= k ; a__d >= m ; a__d >= d ; a__h(X,X) >= a__g(mark(X),mark(X),a__f(a__k)) ; a__h(X1,X2) >= h(X1,X2) ; a__f(X) >= a__z(mark(X),X) ; a__f(X) >= f(X) ; a__A >= a__h(a__f(a__a),a__f(a__b)) ; a__A >= A ; a__g(d,X,X) >= a__A ; a__g(X1,X2,X3) >= g(X1,X2,X3) ; mark(e) >= e ; mark(l) >= l ; mark(m) >= m ; mark(d) >= a__d ; mark(A) >= a__A ; mark(a) >= a__a ; mark(b) >= a__b ; mark(c) >= a__c ; mark(k) >= a__k ; mark(z(X1,X2)) >= a__z(mark(X1),X2) ; mark(f(X)) >= a__f(mark(X)) ; mark(h(X1,X2)) >= a__h(mark(X1),mark(X2)) ; mark(g(X1,X2,X3)) >= a__g(mark(X1),mark(X2),mark(X3)) ; a__z(e,X) >= mark(X) ; a__z(X1,X2) >= z(X1,X2) ; Marked_a__g(d,X,X) >= Marked_a__A ; Marked_a__h(X,X) > Marked_a__g(mark(X),mark(X),a__f(a__k)) ; Marked_a__A >= Marked_a__h(a__f(a__a),a__f(a__b)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { a__c >= e ; a__c >= l ; a__c >= c ; a__a >= a__c ; a__a >= a__d ; a__a >= a ; a__b >= a__c ; a__b >= a__d ; a__b >= b ; a__k >= l ; a__k >= m ; a__k >= k ; a__d >= m ; a__d >= d ; a__h(X,X) >= a__g(mark(X),mark(X),a__f(a__k)) ; a__h(X1,X2) >= h(X1,X2) ; a__f(X) >= a__z(mark(X),X) ; a__f(X) >= f(X) ; a__A >= a__h(a__f(a__a),a__f(a__b)) ; a__A >= A ; a__g(d,X,X) >= a__A ; a__g(X1,X2,X3) >= g(X1,X2,X3) ; mark(e) >= e ; mark(l) >= l ; mark(m) >= m ; mark(d) >= a__d ; mark(A) >= a__A ; mark(a) >= a__a ; mark(b) >= a__b ; mark(c) >= a__c ; mark(k) >= a__k ; mark(z(X1,X2)) >= a__z(mark(X1),X2) ; mark(f(X)) >= a__f(mark(X)) ; mark(h(X1,X2)) >= a__h(mark(X1),mark(X2)) ; mark(g(X1,X2,X3)) >= a__g(mark(X1),mark(X2),mark(X3)) ; a__z(e,X) >= mark(X) ; a__z(X1,X2) >= z(X1,X2) ; Marked_a__g(d,X,X) >= Marked_a__A ; Marked_a__h(X,X) > Marked_a__g(mark(X),mark(X),a__f(a__k)) ; Marked_a__A >= Marked_a__h(a__f(a__a),a__f(a__b)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 52.438133 seconds (real time) Cime Exit Status: 0