- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] half(0) -> 0 [2] half(s(0)) -> 0 [3] half(s(s(x))) -> s(half(x)) [4] bits(0) -> 0 [5] bits(s(x)) -> s(bits(half(s(x)))) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> } { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { half(0) >= 0 ; half(s(0)) >= 0 ; half(s(s(x))) >= s(half(x)) ; bits(0) >= 0 ; bits(s(x)) >= s(bits(half(s(x)))) ; Marked_bits(s(x)) >= Marked_bits(half(s(x))) ; } + Disjunctions:{ { Marked_bits(s(x)) > Marked_bits(half(s(x))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: half(0) >= 0 constraint: half(s(0)) >= 0 constraint: half(s(s(x))) >= s(half(x)) constraint: bits(0) >= 0 constraint: bits(s(x)) >= s(bits(half(s(x)))) constraint: Marked_bits(s(x)) >= Marked_bits(half(s(x))) APPLY CRITERIA (Subterm criterion) ST: Marked_half -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] half(0) -> 0 [2] half(s(0)) -> 0 [3] half(s(s(x))) -> s(half(x)) [4] bits(0) -> 0 [5] bits(s(x)) -> s(bits(half(s(x)))) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ 0 ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_bits ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ s ] (X0) = [ [ 0 , 1 , 0 ] [ 1 , 0 , 0 ] [ 1 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]; [ half ] (X0) = [ [ 0 , 1 , 0 ] [ 0 , 1 , 0 ] [ 0 , 1 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ bits ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 1 ] [ 0 , 1 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]; ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} Cime worked for 0.524023 seconds (real time) Cime Exit Status: 0