- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(and(tt,X)) -> mark(X) [2] active(plus(N,0)) -> mark(N) [3] active(plus(N,s(M))) -> mark(s(plus(N,M))) [4] active(and(X1,X2)) -> and(active(X1),X2) [5] active(plus(X1,X2)) -> plus(active(X1),X2) [6] active(plus(X1,X2)) -> plus(X1,active(X2)) [7] active(s(X)) -> s(active(X)) [8] and(mark(X1),X2) -> mark(and(X1,X2)) [9] plus(mark(X1),X2) -> mark(plus(X1,X2)) [10] plus(X1,mark(X2)) -> mark(plus(X1,X2)) [11] s(mark(X)) -> mark(s(X)) [12] proper(and(X1,X2)) -> and(proper(X1),proper(X2)) [13] proper(tt) -> ok(tt) [14] proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) [15] proper(0) -> ok(0) [16] proper(s(X)) -> s(proper(X)) [17] and(ok(X1),ok(X2)) -> ok(and(X1,X2)) [18] plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) [19] s(ok(X)) -> ok(s(X)) [20] top(mark(X)) -> top(proper(X)) [21] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 6 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(and(tt,X)) >= mark(X) ; active(and(X1,X2)) >= and(active(X1),X2) ; active(plus(N,0)) >= mark(N) ; active(plus(N,s(M))) >= mark(s(plus(N,M))) ; active(plus(X1,X2)) >= plus(active(X1),X2) ; active(plus(X1,X2)) >= plus(X1,active(X2)) ; active(s(X)) >= s(active(X)) ; and(mark(X1),X2) >= mark(and(X1,X2)) ; and(ok(X1),ok(X2)) >= ok(and(X1,X2)) ; plus(mark(X1),X2) >= mark(plus(X1,X2)) ; plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) ; plus(X1,mark(X2)) >= mark(plus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; proper(and(X1,X2)) >= and(proper(X1),proper(X2)) ; proper(tt) >= ok(tt) ; proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(s(X)) >= s(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(and(tt,X)) >= mark(X) constraint: active(and(X1,X2)) >= and(active(X1),X2) constraint: active(plus(N,0)) >= mark(N) constraint: active(plus(N,s(M))) >= mark(s(plus(N,M))) constraint: active(plus(X1,X2)) >= plus(active(X1),X2) constraint: active(plus(X1,X2)) >= plus(X1,active(X2)) constraint: active(s(X)) >= s(active(X)) constraint: and(mark(X1),X2) >= mark(and(X1,X2)) constraint: and(ok(X1),ok(X2)) >= ok(and(X1,X2)) constraint: plus(mark(X1),X2) >= mark(plus(X1,X2)) constraint: plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) constraint: plus(X1,mark(X2)) >= mark(plus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: proper(and(X1,X2)) >= and(proper(X1),proper(X2)) constraint: proper(tt) >= ok(tt) constraint: proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) constraint: proper(0) >= ok(0) constraint: proper(s(X)) >= s(proper(X)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(mark(X)) >= Marked_top(proper(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Subterm criterion) ST: Marked_proper -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_active -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_and -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_plus -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_s -> 1 APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(and(tt,X)) >= mark(X) ; active(and(X1,X2)) >= and(active(X1),X2) ; active(plus(N,0)) >= mark(N) ; active(plus(N,s(M))) >= mark(s(plus(N,M))) ; active(plus(X1,X2)) >= plus(active(X1),X2) ; active(plus(X1,X2)) >= plus(X1,active(X2)) ; active(s(X)) >= s(active(X)) ; and(mark(X1),X2) >= mark(and(X1,X2)) ; and(ok(X1),ok(X2)) >= ok(and(X1,X2)) ; plus(mark(X1),X2) >= mark(plus(X1,X2)) ; plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) ; plus(X1,mark(X2)) >= mark(plus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; proper(and(X1,X2)) >= and(proper(X1),proper(X2)) ; proper(tt) >= ok(tt) ; proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(s(X)) >= s(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(and(tt,X)) >= mark(X) constraint: active(and(X1,X2)) >= and(active(X1),X2) constraint: active(plus(N,0)) >= mark(N) constraint: active(plus(N,s(M))) >= mark(s(plus(N,M))) constraint: active(plus(X1,X2)) >= plus(active(X1),X2) constraint: active(plus(X1,X2)) >= plus(X1,active(X2)) constraint: active(s(X)) >= s(active(X)) constraint: and(mark(X1),X2) >= mark(and(X1,X2)) constraint: and(ok(X1),ok(X2)) >= ok(and(X1,X2)) constraint: plus(mark(X1),X2) >= mark(plus(X1,X2)) constraint: plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) constraint: plus(X1,mark(X2)) >= mark(plus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: proper(and(X1,X2)) >= and(proper(X1),proper(X2)) constraint: proper(tt) >= ok(tt) constraint: proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) constraint: proper(0) >= ok(0) constraint: proper(s(X)) >= s(proper(X)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) ST: Marked_and -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) ST: Marked_plus -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] active(and(tt,X)) -> mark(X) [2] active(plus(N,0)) -> mark(N) [3] active(plus(N,s(M))) -> mark(s(plus(N,M))) [4] active(and(X1,X2)) -> and(active(X1),X2) [5] active(plus(X1,X2)) -> plus(active(X1),X2) [6] active(plus(X1,X2)) -> plus(X1,active(X2)) [7] active(s(X)) -> s(active(X)) [8] and(mark(X1),X2) -> mark(and(X1,X2)) [9] plus(mark(X1),X2) -> mark(plus(X1,X2)) [10] plus(X1,mark(X2)) -> mark(plus(X1,X2)) [11] s(mark(X)) -> mark(s(X)) [12] proper(and(X1,X2)) -> and(proper(X1),proper(X2)) [13] proper(tt) -> ok(tt) [14] proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) [15] proper(0) -> ok(0) [16] proper(s(X)) -> s(proper(X)) [17] and(ok(X1),ok(X2)) -> ok(and(X1,X2)) [18] plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) [19] s(ok(X)) -> ok(s(X)) [20] top(mark(X)) -> top(proper(X)) [21] top(ok(X)) -> top(active(X)) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 1*X0 + 1; [ ok ] (X0) = 1*X0; [ plus ] (X0,X1) = 2*X1 + 2*X0; [ and ] (X0,X1) = 1*X1 + 1*X0 + 1; [ Marked_top ] (X0) = 1*X0; [ s ] (X0) = 1*X0 + 2; [ active ] (X0) = 1*X0; [ top ] (X0) = 0; [ 0 ] () = 1; [ tt ] () = 0; [ proper ] (X0) = 1*X0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 1*X0 + 0; [ ok ] (X0) = 2 + 2*X0 + 0; [ plus ] (X0,X1) = 2 + 2*X0 + 1*X1 + 0; [ and ] (X0,X1) = 1*X1 + 0; [ Marked_top ] (X0) = 3*X0 + 0; [ s ] (X0) = 1 + 2*X0 + 0; [ active ] (X0) = 2*X0 + 0; [ top ] (X0) = 0; [ 0 ] () = 0; [ tt ] () = 2 + 0; [ proper ] (X0) = 2 + 3*X0 + 0; ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} Cime worked for 0.192979 seconds (real time) Cime Exit Status: 0