- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] zeros -> cons(0,n__zeros) [2] U11(tt,V1) -> U12(isNatList(activate(V1))) [3] U12(tt) -> tt [4] U21(tt,V1) -> U22(isNat(activate(V1))) [5] U22(tt) -> tt [6] U31(tt,V) -> U32(isNatList(activate(V))) [7] U32(tt) -> tt [8] U41(tt,V1,V2) -> U42(isNat(activate(V1)),activate(V2)) [9] U42(tt,V2) -> U43(isNatIList(activate(V2))) [10] U43(tt) -> tt [11] U51(tt,V1,V2) -> U52(isNat(activate(V1)),activate(V2)) [12] U52(tt,V2) -> U53(isNatList(activate(V2))) [13] U53(tt) -> tt [14] U61(tt,L) -> s(length(activate(L))) [15] and(tt,X) -> activate(X) [16] isNat(n__0) -> tt [17] isNat(n__length(V1)) -> U11(isNatIListKind(activate(V1)),activate(V1)) [18] isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) [19] isNatIList(V) -> U31(isNatIListKind(activate(V)),activate(V)) [20] isNatIList(n__zeros) -> tt [21] isNatIList(n__cons(V1,V2)) -> U41(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))),activate(V1), activate(V2)) [22] isNatIListKind(n__nil) -> tt [23] isNatIListKind(n__zeros) -> tt [24] isNatIListKind(n__cons(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) [25] isNatKind(n__0) -> tt [26] isNatKind(n__length(V1)) -> isNatIListKind(activate(V1)) [27] isNatKind(n__s(V1)) -> isNatKind(activate(V1)) [28] isNatList(n__nil) -> tt [29] isNatList(n__cons(V1,V2)) -> U51(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))),activate(V1), activate(V2)) [30] length(nil) -> 0 [31] length(cons(N,L)) -> U61(and(and(isNatList(activate(L)),n__isNatIListKind(activate(L))), n__and(isNat(N),n__isNatKind(N))),activate(L)) [32] zeros -> n__zeros [33] 0 -> n__0 [34] length(X) -> n__length(X) [35] s(X) -> n__s(X) [36] cons(X1,X2) -> n__cons(X1,X2) [37] isNatIListKind(X) -> n__isNatIListKind(X) [38] nil -> n__nil [39] and(X1,X2) -> n__and(X1,X2) [40] isNatKind(X) -> n__isNatKind(X) [41] activate(n__zeros) -> zeros [42] activate(n__0) -> 0 [43] activate(n__length(X)) -> length(X) [44] activate(n__s(X)) -> s(X) [45] activate(n__cons(X1,X2)) -> cons(X1,X2) [46] activate(n__isNatIListKind(X)) -> isNatIListKind(X) [47] activate(n__nil) -> nil [48] activate(n__and(X1,X2)) -> and(X1,X2) [49] activate(n__isNatKind(X)) -> isNatKind(X) [50] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(X1,X2) >= n__cons(X1,X2) ; 0 >= n__0 ; zeros >= cons(0,n__zeros) ; zeros >= n__zeros ; U12(tt) >= tt ; isNatList(n__cons(V1,V2)) >= U51(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatList(n__nil) >= tt ; activate(n__zeros) >= zeros ; activate(n__0) >= 0 ; activate(n__length(X)) >= length(X) ; activate(n__s(X)) >= s(X) ; activate(n__isNatIListKind(X)) >= isNatIListKind(X) ; activate(n__cons(X1,X2)) >= cons(X1,X2) ; activate(n__nil) >= nil ; activate(n__and(X1,X2)) >= and(X1,X2) ; activate(n__isNatKind(X)) >= isNatKind(X) ; activate(X) >= X ; U11(tt,V1) >= U12(isNatList(activate(V1))) ; U22(tt) >= tt ; isNat(n__0) >= tt ; isNat(n__length(V1)) >= U11(isNatIListKind(activate(V1)),activate(V1)) ; isNat(n__s(V1)) >= U21(isNatKind(activate(V1)),activate(V1)) ; U21(tt,V1) >= U22(isNat(activate(V1))) ; U32(tt) >= tt ; U31(tt,V) >= U32(isNatList(activate(V))) ; U42(tt,V2) >= U43(isNatIList(activate(V2))) ; U41(tt,V1,V2) >= U42(isNat(activate(V1)),activate(V2)) ; U43(tt) >= tt ; isNatIList(n__zeros) >= tt ; isNatIList(n__cons(V1,V2)) >= U41(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatIList(V) >= U31(isNatIListKind(activate(V)),activate(V)) ; U52(tt,V2) >= U53(isNatList(activate(V2))) ; U51(tt,V1,V2) >= U52(isNat(activate(V1)),activate(V2)) ; U53(tt) >= tt ; s(X) >= n__s(X) ; length(cons(N,L)) >= U61(and(and(isNatList(activate(L)), n__isNatIListKind(activate(L))), n__and(isNat(N),n__isNatKind(N))),activate(L)) ; length(nil) >= 0 ; length(X) >= n__length(X) ; U61(tt,L) >= s(length(activate(L))) ; and(tt,X) >= activate(X) ; and(X1,X2) >= n__and(X1,X2) ; isNatIListKind(n__zeros) >= tt ; isNatIListKind(n__cons(V1,V2)) >= and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))) ; isNatIListKind(n__nil) >= tt ; isNatIListKind(X) >= n__isNatIListKind(X) ; isNatKind(n__0) >= tt ; isNatKind(n__length(V1)) >= isNatIListKind(activate(V1)) ; isNatKind(n__s(V1)) >= isNatKind(activate(V1)) ; isNatKind(X) >= n__isNatKind(X) ; nil >= n__nil ; Marked_isNatIList(n__cons(V1,V2)) >= Marked_U41(and(isNatKind(activate(V1)), n__isNatIListKind( activate(V2))), activate(V1),activate(V2)) ; Marked_U41(tt,V1,V2) >= Marked_U42(isNat(activate(V1)),activate(V2)) ; Marked_U42(tt,V2) >= Marked_isNatIList(activate(V2)) ; } + Disjunctions:{ { Marked_isNatIList(n__cons(V1,V2)) > Marked_U41(and(isNatKind(activate(V1)), n__isNatIListKind(activate( V2))), activate(V1),activate(V2)) ; } { Marked_U41(tt,V1,V2) > Marked_U42(isNat(activate(V1)),activate(V2)) ; } { Marked_U42(tt,V2) > Marked_isNatIList(activate(V2)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { cons(X1,X2) >= n__cons(X1,X2) ; 0 >= n__0 ; zeros >= cons(0,n__zeros) ; zeros >= n__zeros ; U12(tt) >= tt ; isNatList(n__cons(V1,V2)) >= U51(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatList(n__nil) >= tt ; activate(n__zeros) >= zeros ; activate(n__0) >= 0 ; activate(n__length(X)) >= length(X) ; activate(n__s(X)) >= s(X) ; activate(n__isNatIListKind(X)) >= isNatIListKind(X) ; activate(n__cons(X1,X2)) >= cons(X1,X2) ; activate(n__nil) >= nil ; activate(n__and(X1,X2)) >= and(X1,X2) ; activate(n__isNatKind(X)) >= isNatKind(X) ; activate(X) >= X ; U11(tt,V1) >= U12(isNatList(activate(V1))) ; U22(tt) >= tt ; isNat(n__0) >= tt ; isNat(n__length(V1)) >= U11(isNatIListKind(activate(V1)),activate(V1)) ; isNat(n__s(V1)) >= U21(isNatKind(activate(V1)),activate(V1)) ; U21(tt,V1) >= U22(isNat(activate(V1))) ; U32(tt) >= tt ; U31(tt,V) >= U32(isNatList(activate(V))) ; U42(tt,V2) >= U43(isNatIList(activate(V2))) ; U41(tt,V1,V2) >= U42(isNat(activate(V1)),activate(V2)) ; U43(tt) >= tt ; isNatIList(n__zeros) >= tt ; isNatIList(n__cons(V1,V2)) >= U41(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatIList(V) >= U31(isNatIListKind(activate(V)),activate(V)) ; U52(tt,V2) >= U53(isNatList(activate(V2))) ; U51(tt,V1,V2) >= U52(isNat(activate(V1)),activate(V2)) ; U53(tt) >= tt ; s(X) >= n__s(X) ; length(cons(N,L)) >= U61(and(and(isNatList(activate(L)), n__isNatIListKind(activate(L))), n__and(isNat(N),n__isNatKind(N))),activate(L)) ; length(nil) >= 0 ; length(X) >= n__length(X) ; U61(tt,L) >= s(length(activate(L))) ; and(tt,X) >= activate(X) ; and(X1,X2) >= n__and(X1,X2) ; isNatIListKind(n__zeros) >= tt ; isNatIListKind(n__cons(V1,V2)) >= and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))) ; isNatIListKind(n__nil) >= tt ; isNatIListKind(X) >= n__isNatIListKind(X) ; isNatKind(n__0) >= tt ; isNatKind(n__length(V1)) >= isNatIListKind(activate(V1)) ; isNatKind(n__s(V1)) >= isNatKind(activate(V1)) ; isNatKind(X) >= n__isNatKind(X) ; nil >= n__nil ; Marked_isNatIList(n__cons(V1,V2)) >= Marked_U41(and(isNatKind(activate(V1)), n__isNatIListKind( activate(V2))), activate(V1),activate(V2)) ; Marked_U41(tt,V1,V2) >= Marked_U42(isNat(activate(V1)),activate(V2)) ; Marked_U42(tt,V2) > Marked_isNatIList(activate(V2)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { cons(X1,X2) >= n__cons(X1,X2) ; 0 >= n__0 ; zeros >= cons(0,n__zeros) ; zeros >= n__zeros ; U12(tt) >= tt ; isNatList(n__cons(V1,V2)) >= U51(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatList(n__nil) >= tt ; activate(n__zeros) >= zeros ; activate(n__0) >= 0 ; activate(n__length(X)) >= length(X) ; activate(n__s(X)) >= s(X) ; activate(n__isNatIListKind(X)) >= isNatIListKind(X) ; activate(n__cons(X1,X2)) >= cons(X1,X2) ; activate(n__nil) >= nil ; activate(n__and(X1,X2)) >= and(X1,X2) ; activate(n__isNatKind(X)) >= isNatKind(X) ; activate(X) >= X ; U11(tt,V1) >= U12(isNatList(activate(V1))) ; U22(tt) >= tt ; isNat(n__0) >= tt ; isNat(n__length(V1)) >= U11(isNatIListKind(activate(V1)),activate(V1)) ; isNat(n__s(V1)) >= U21(isNatKind(activate(V1)),activate(V1)) ; U21(tt,V1) >= U22(isNat(activate(V1))) ; U32(tt) >= tt ; U31(tt,V) >= U32(isNatList(activate(V))) ; U42(tt,V2) >= U43(isNatIList(activate(V2))) ; U41(tt,V1,V2) >= U42(isNat(activate(V1)),activate(V2)) ; U43(tt) >= tt ; isNatIList(n__zeros) >= tt ; isNatIList(n__cons(V1,V2)) >= U41(and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))), activate(V1),activate(V2)) ; isNatIList(V) >= U31(isNatIListKind(activate(V)),activate(V)) ; U52(tt,V2) >= U53(isNatList(activate(V2))) ; U51(tt,V1,V2) >= U52(isNat(activate(V1)),activate(V2)) ; U53(tt) >= tt ; s(X) >= n__s(X) ; length(cons(N,L)) >= U61(and(and(isNatList(activate(L)), n__isNatIListKind(activate(L))), n__and(isNat(N),n__isNatKind(N))),activate(L)) ; length(nil) >= 0 ; length(X) >= n__length(X) ; U61(tt,L) >= s(length(activate(L))) ; and(tt,X) >= activate(X) ; and(X1,X2) >= n__and(X1,X2) ; isNatIListKind(n__zeros) >= tt ; isNatIListKind(n__cons(V1,V2)) >= and(isNatKind(activate(V1)), n__isNatIListKind(activate(V2))) ; isNatIListKind(n__nil) >= tt ; isNatIListKind(X) >= n__isNatIListKind(X) ; isNatKind(n__0) >= tt ; isNatKind(n__length(V1)) >= isNatIListKind(activate(V1)) ; isNatKind(n__s(V1)) >= isNatKind(activate(V1)) ; isNatKind(X) >= n__isNatKind(X) ; nil >= n__nil ; Marked_isNatIList(n__cons(V1,V2)) >= Marked_U41(and(isNatKind(activate(V1)), n__isNatIListKind( activate(V2))), activate(V1),activate(V2)) ; Marked_U41(tt,V1,V2) >= Marked_U42(isNat(activate(V1)),activate(V2)) ; Marked_U42(tt,V2) > Marked_isNatIList(activate(V2)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 204.416190 seconds (real time) Cime Exit Status: 0