- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] f(0) -> cons(0) [2] f(s(0)) -> f(p(s(0))) [3] p(s(X)) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { f(0) >= cons(0) ; f(s(0)) >= f(p(s(0))) ; p(s(X)) >= X ; Marked_f(s(0)) >= Marked_f(p(s(0))) ; } + Disjunctions:{ { Marked_f(s(0)) > Marked_f(p(s(0))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: f(0) >= cons(0) constraint: f(s(0)) >= f(p(s(0))) constraint: p(s(X)) >= X constraint: Marked_f(s(0)) >= Marked_f(p(s(0))) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] f(0) -> cons(0) [2] f(s(0)) -> f(p(s(0))) [3] p(s(X)) -> X , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ cons ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ s ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 1 , 1 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 1 ] ]; [ f ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 1 , 0 ] [ 1 , 0 , 1 ] [ 1 , 1 , 1 ] ]; [ Marked_f ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ 0 ] () = [ [ 0 , 0 , 1 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ p ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 1 ] [ 1 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; ]} ]} ]} Cime worked for 0.472719 seconds (real time) Cime Exit Status: 0