- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] nats -> adx(zeros) [2] zeros -> cons(n__0,n__zeros) [3] incr(cons(X,Y)) -> cons(n__s(activate(X)),n__incr(activate(Y))) [4] adx(cons(X,Y)) -> incr(cons(activate(X),n__adx(activate(Y)))) [5] hd(cons(X,Y)) -> activate(X) [6] tl(cons(X,Y)) -> activate(Y) [7] 0 -> n__0 [8] zeros -> n__zeros [9] s(X) -> n__s(X) [10] incr(X) -> n__incr(X) [11] adx(X) -> n__adx(X) [12] activate(n__0) -> 0 [13] activate(n__zeros) -> zeros [14] activate(n__s(X)) -> s(X) [15] activate(n__incr(X)) -> incr(activate(X)) [16] activate(n__adx(X)) -> adx(activate(X)) [17] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { adx(cons(X,Y)) >= incr(cons(activate(X),n__adx(activate(Y)))) ; adx(X) >= n__adx(X) ; zeros >= cons(n__0,n__zeros) ; zeros >= n__zeros ; nats >= adx(zeros) ; activate(n__0) >= 0 ; activate(n__zeros) >= zeros ; activate(n__s(X)) >= s(X) ; activate(n__incr(X)) >= incr(activate(X)) ; activate(n__adx(X)) >= adx(activate(X)) ; activate(X) >= X ; incr(cons(X,Y)) >= cons(n__s(activate(X)),n__incr(activate(Y))) ; incr(X) >= n__incr(X) ; hd(cons(X,Y)) >= activate(X) ; tl(cons(X,Y)) >= activate(Y) ; 0 >= n__0 ; s(X) >= n__s(X) ; Marked_activate(n__incr(X)) >= Marked_activate(X) ; Marked_activate(n__incr(X)) >= Marked_incr(activate(X)) ; Marked_activate(n__adx(X)) >= Marked_activate(X) ; Marked_activate(n__adx(X)) >= Marked_adx(activate(X)) ; Marked_adx(cons(X,Y)) >= Marked_activate(X) ; Marked_adx(cons(X,Y)) >= Marked_activate(Y) ; Marked_adx(cons(X,Y)) >= Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; Marked_incr(cons(X,Y)) >= Marked_activate(X) ; Marked_incr(cons(X,Y)) >= Marked_activate(Y) ; } + Disjunctions:{ { Marked_activate(n__incr(X)) > Marked_activate(X) ; } { Marked_activate(n__incr(X)) > Marked_incr(activate(X)) ; } { Marked_activate(n__adx(X)) > Marked_activate(X) ; } { Marked_activate(n__adx(X)) > Marked_adx(activate(X)) ; } { Marked_adx(cons(X,Y)) > Marked_activate(X) ; } { Marked_adx(cons(X,Y)) > Marked_activate(Y) ; } { Marked_adx(cons(X,Y)) > Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; } { Marked_incr(cons(X,Y)) > Marked_activate(X) ; } { Marked_incr(cons(X,Y)) > Marked_activate(Y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: adx(cons(X,Y)) >= incr(cons(activate(X),n__adx(activate(Y)))) constraint: adx(X) >= n__adx(X) constraint: zeros >= cons(n__0,n__zeros) constraint: zeros >= n__zeros constraint: nats >= adx(zeros) constraint: activate(n__0) >= 0 constraint: activate(n__zeros) >= zeros constraint: activate(n__s(X)) >= s(X) constraint: activate(n__incr(X)) >= incr(activate(X)) constraint: activate(n__adx(X)) >= adx(activate(X)) constraint: activate(X) >= X constraint: incr(cons(X,Y)) >= cons(n__s(activate(X)),n__incr(activate(Y))) constraint: incr(X) >= n__incr(X) constraint: hd(cons(X,Y)) >= activate(X) constraint: tl(cons(X,Y)) >= activate(Y) constraint: 0 >= n__0 constraint: s(X) >= n__s(X) constraint: Marked_activate(n__incr(X)) >= Marked_activate(X) constraint: Marked_activate(n__incr(X)) >= Marked_incr(activate(X)) constraint: Marked_activate(n__adx(X)) >= Marked_activate(X) constraint: Marked_activate(n__adx(X)) >= Marked_adx(activate(X)) constraint: Marked_adx(cons(X,Y)) >= Marked_activate(X) constraint: Marked_adx(cons(X,Y)) >= Marked_activate(Y) constraint: Marked_adx(cons(X,Y)) >= Marked_incr(cons(activate(X), n__adx(activate(Y)))) constraint: Marked_incr(cons(X,Y)) >= Marked_activate(X) constraint: Marked_incr(cons(X,Y)) >= Marked_activate(Y) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { adx(cons(X,Y)) >= incr(cons(activate(X),n__adx(activate(Y)))) ; adx(X) >= n__adx(X) ; zeros >= cons(n__0,n__zeros) ; zeros >= n__zeros ; nats >= adx(zeros) ; activate(n__0) >= 0 ; activate(n__zeros) >= zeros ; activate(n__s(X)) >= s(X) ; activate(n__incr(X)) >= incr(activate(X)) ; activate(n__adx(X)) >= adx(activate(X)) ; activate(X) >= X ; incr(cons(X,Y)) >= cons(n__s(activate(X)),n__incr(activate(Y))) ; incr(X) >= n__incr(X) ; hd(cons(X,Y)) >= activate(X) ; tl(cons(X,Y)) >= activate(Y) ; 0 >= n__0 ; s(X) >= n__s(X) ; Marked_activate(n__incr(X)) >= Marked_activate(X) ; Marked_activate(n__incr(X)) >= Marked_incr(activate(X)) ; Marked_activate(n__adx(X)) >= Marked_adx(activate(X)) ; Marked_adx(cons(X,Y)) >= Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; Marked_incr(cons(X,Y)) >= Marked_activate(X) ; Marked_incr(cons(X,Y)) >= Marked_activate(Y) ; } + Disjunctions:{ { Marked_activate(n__incr(X)) > Marked_activate(X) ; } { Marked_activate(n__incr(X)) > Marked_incr(activate(X)) ; } { Marked_activate(n__adx(X)) > Marked_adx(activate(X)) ; } { Marked_adx(cons(X,Y)) > Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; } { Marked_incr(cons(X,Y)) > Marked_activate(X) ; } { Marked_incr(cons(X,Y)) > Marked_activate(Y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { adx(cons(X,Y)) >= incr(cons(activate(X),n__adx(activate(Y)))) ; adx(X) >= n__adx(X) ; zeros >= cons(n__0,n__zeros) ; zeros >= n__zeros ; nats >= adx(zeros) ; activate(n__0) >= 0 ; activate(n__zeros) >= zeros ; activate(n__s(X)) >= s(X) ; activate(n__incr(X)) >= incr(activate(X)) ; activate(n__adx(X)) >= adx(activate(X)) ; activate(X) >= X ; incr(cons(X,Y)) >= cons(n__s(activate(X)),n__incr(activate(Y))) ; incr(X) >= n__incr(X) ; hd(cons(X,Y)) >= activate(X) ; tl(cons(X,Y)) >= activate(Y) ; 0 >= n__0 ; s(X) >= n__s(X) ; Marked_activate(n__incr(X)) > Marked_activate(X) ; Marked_activate(n__incr(X)) > Marked_incr(activate(X)) ; Marked_activate(n__adx(X)) >= Marked_adx(activate(X)) ; Marked_adx(cons(X,Y)) >= Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; Marked_incr(cons(X,Y)) > Marked_activate(X) ; Marked_incr(cons(X,Y)) > Marked_activate(Y) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { adx(cons(X,Y)) >= incr(cons(activate(X),n__adx(activate(Y)))) ; adx(X) >= n__adx(X) ; zeros >= cons(n__0,n__zeros) ; zeros >= n__zeros ; nats >= adx(zeros) ; activate(n__0) >= 0 ; activate(n__zeros) >= zeros ; activate(n__s(X)) >= s(X) ; activate(n__incr(X)) >= incr(activate(X)) ; activate(n__adx(X)) >= adx(activate(X)) ; activate(X) >= X ; incr(cons(X,Y)) >= cons(n__s(activate(X)),n__incr(activate(Y))) ; incr(X) >= n__incr(X) ; hd(cons(X,Y)) >= activate(X) ; tl(cons(X,Y)) >= activate(Y) ; 0 >= n__0 ; s(X) >= n__s(X) ; Marked_activate(n__incr(X)) > Marked_activate(X) ; Marked_activate(n__incr(X)) > Marked_incr(activate(X)) ; Marked_activate(n__adx(X)) >= Marked_adx(activate(X)) ; Marked_adx(cons(X,Y)) >= Marked_incr(cons(activate(X),n__adx(activate(Y)))) ; Marked_incr(cons(X,Y)) > Marked_activate(X) ; Marked_incr(cons(X,Y)) > Marked_activate(Y) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(31078 bt (41511) [6888]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 52.449821 seconds (real time) Cime Exit Status: 0