- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(incr(nil)) -> mark(nil) [2] active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) [3] active(adx(nil)) -> mark(nil) [4] active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) [5] active(nats) -> mark(adx(zeros)) [6] active(zeros) -> mark(cons(0,zeros)) [7] active(head(cons(X,L))) -> mark(X) [8] active(tail(cons(X,L))) -> mark(L) [9] active(incr(X)) -> incr(active(X)) [10] active(cons(X1,X2)) -> cons(active(X1),X2) [11] active(s(X)) -> s(active(X)) [12] active(adx(X)) -> adx(active(X)) [13] active(head(X)) -> head(active(X)) [14] active(tail(X)) -> tail(active(X)) [15] incr(mark(X)) -> mark(incr(X)) [16] cons(mark(X1),X2) -> mark(cons(X1,X2)) [17] s(mark(X)) -> mark(s(X)) [18] adx(mark(X)) -> mark(adx(X)) [19] head(mark(X)) -> mark(head(X)) [20] tail(mark(X)) -> mark(tail(X)) [21] proper(incr(X)) -> incr(proper(X)) [22] proper(nil) -> ok(nil) [23] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [24] proper(s(X)) -> s(proper(X)) [25] proper(adx(X)) -> adx(proper(X)) [26] proper(nats) -> ok(nats) [27] proper(zeros) -> ok(zeros) [28] proper(0) -> ok(0) [29] proper(head(X)) -> head(proper(X)) [30] proper(tail(X)) -> tail(proper(X)) [31] incr(ok(X)) -> ok(incr(X)) [32] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [33] s(ok(X)) -> ok(s(X)) [34] adx(ok(X)) -> ok(adx(X)) [35] head(ok(X)) -> ok(head(X)) [36] tail(ok(X)) -> ok(tail(X)) [37] top(mark(X)) -> top(proper(X)) [38] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 9 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(incr(nil)) >= mark(nil) ; active(incr(cons(X,L))) >= mark(cons(s(X),incr(L))) ; active(incr(X)) >= incr(active(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(s(X)) >= s(active(X)) ; active(adx(nil)) >= mark(nil) ; active(adx(cons(X,L))) >= mark(incr(cons(X,adx(L)))) ; active(adx(X)) >= adx(active(X)) ; active(zeros) >= mark(cons(0,zeros)) ; active(nats) >= mark(adx(zeros)) ; active(head(cons(X,L))) >= mark(X) ; active(head(X)) >= head(active(X)) ; active(tail(cons(X,L))) >= mark(L) ; active(tail(X)) >= tail(active(X)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; adx(mark(X)) >= mark(adx(X)) ; adx(ok(X)) >= ok(adx(X)) ; head(mark(X)) >= mark(head(X)) ; head(ok(X)) >= ok(head(X)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; proper(nil) >= ok(nil) ; proper(incr(X)) >= incr(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(adx(X)) >= adx(proper(X)) ; proper(zeros) >= ok(zeros) ; proper(nats) >= ok(nats) ; proper(0) >= ok(0) ; proper(head(X)) >= head(proper(X)) ; proper(tail(X)) >= tail(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { active(incr(nil)) >= mark(nil) ; active(incr(cons(X,L))) >= mark(cons(s(X),incr(L))) ; active(incr(X)) >= incr(active(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(s(X)) >= s(active(X)) ; active(adx(nil)) >= mark(nil) ; active(adx(cons(X,L))) >= mark(incr(cons(X,adx(L)))) ; active(adx(X)) >= adx(active(X)) ; active(zeros) >= mark(cons(0,zeros)) ; active(nats) >= mark(adx(zeros)) ; active(head(cons(X,L))) >= mark(X) ; active(head(X)) >= head(active(X)) ; active(tail(cons(X,L))) >= mark(L) ; active(tail(X)) >= tail(active(X)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; adx(mark(X)) >= mark(adx(X)) ; adx(ok(X)) >= ok(adx(X)) ; head(mark(X)) >= mark(head(X)) ; head(ok(X)) >= ok(head(X)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; proper(nil) >= ok(nil) ; proper(incr(X)) >= incr(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(adx(X)) >= adx(proper(X)) ; proper(zeros) >= ok(zeros) ; proper(nats) >= ok(nats) ; proper(0) >= ok(0) ; proper(head(X)) >= head(proper(X)) ; proper(tail(X)) >= tail(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { active(incr(nil)) >= mark(nil) ; active(incr(cons(X,L))) >= mark(cons(s(X),incr(L))) ; active(incr(X)) >= incr(active(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(s(X)) >= s(active(X)) ; active(adx(nil)) >= mark(nil) ; active(adx(cons(X,L))) >= mark(incr(cons(X,adx(L)))) ; active(adx(X)) >= adx(active(X)) ; active(zeros) >= mark(cons(0,zeros)) ; active(nats) >= mark(adx(zeros)) ; active(head(cons(X,L))) >= mark(X) ; active(head(X)) >= head(active(X)) ; active(tail(cons(X,L))) >= mark(L) ; active(tail(X)) >= tail(active(X)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; adx(mark(X)) >= mark(adx(X)) ; adx(ok(X)) >= ok(adx(X)) ; head(mark(X)) >= mark(head(X)) ; head(ok(X)) >= ok(head(X)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; proper(nil) >= ok(nil) ; proper(incr(X)) >= incr(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(adx(X)) >= adx(proper(X)) ; proper(zeros) >= ok(zeros) ; proper(nats) >= ok(nats) ; proper(0) >= ok(0) ; proper(head(X)) >= head(proper(X)) ; proper(tail(X)) >= tail(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(13924 bt (17028) [3651]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 80.125624 seconds (real time) Cime Exit Status: 0