- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] from(X) -> cons(X,n__from(n__s(X))) [2] head(cons(X,XS)) -> X [3] 2nd(cons(X,XS)) -> head(activate(XS)) [4] take(0,XS) -> nil [5] take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) [6] sel(0,cons(X,XS)) -> X [7] sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) [8] from(X) -> n__from(X) [9] s(X) -> n__s(X) [10] take(X1,X2) -> n__take(X1,X2) [11] activate(n__from(X)) -> from(activate(X)) [12] activate(n__s(X)) -> s(activate(X)) [13] activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) [14] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) ST: Marked_sel -> 1 APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { from(X) >= cons(X,n__from(n__s(X))) ; from(X) >= n__from(X) ; head(cons(X,XS)) >= X ; activate(n__from(X)) >= from(activate(X)) ; activate(n__s(X)) >= s(activate(X)) ; activate(n__take(X1,X2)) >= take(activate(X1),activate(X2)) ; activate(X) >= X ; 2nd(cons(X,XS)) >= head(activate(XS)) ; take(0,XS) >= nil ; take(s(N),cons(X,XS)) >= cons(X,n__take(N,activate(XS))) ; take(X1,X2) >= n__take(X1,X2) ; s(X) >= n__s(X) ; sel(0,cons(X,XS)) >= X ; sel(s(N),cons(X,XS)) >= sel(N,activate(XS)) ; Marked_activate(n__from(X)) >= Marked_activate(X) ; Marked_activate(n__s(X)) >= Marked_activate(X) ; Marked_activate(n__take(X1,X2)) >= Marked_activate(X1) ; Marked_activate(n__take(X1,X2)) >= Marked_activate(X2) ; Marked_activate(n__take(X1,X2)) >= Marked_take(activate(X1),activate(X2)) ; Marked_take(s(N),cons(X,XS)) >= Marked_activate(XS) ; } + Disjunctions:{ { Marked_activate(n__from(X)) > Marked_activate(X) ; } { Marked_activate(n__s(X)) > Marked_activate(X) ; } { Marked_activate(n__take(X1,X2)) > Marked_activate(X1) ; } { Marked_activate(n__take(X1,X2)) > Marked_activate(X2) ; } { Marked_activate(n__take(X1,X2)) > Marked_take(activate(X1),activate(X2)) ; } { Marked_take(s(N),cons(X,XS)) > Marked_activate(XS) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { from(X) >= cons(X,n__from(n__s(X))) ; from(X) >= n__from(X) ; head(cons(X,XS)) >= X ; activate(n__from(X)) >= from(activate(X)) ; activate(n__s(X)) >= s(activate(X)) ; activate(n__take(X1,X2)) >= take(activate(X1),activate(X2)) ; activate(X) >= X ; 2nd(cons(X,XS)) >= head(activate(XS)) ; take(0,XS) >= nil ; take(s(N),cons(X,XS)) >= cons(X,n__take(N,activate(XS))) ; take(X1,X2) >= n__take(X1,X2) ; s(X) >= n__s(X) ; sel(0,cons(X,XS)) >= X ; sel(s(N),cons(X,XS)) >= sel(N,activate(XS)) ; Marked_activate(n__from(X)) > Marked_activate(X) ; Marked_activate(n__s(X)) > Marked_activate(X) ; Marked_activate(n__take(X1,X2)) > Marked_activate(X1) ; Marked_activate(n__take(X1,X2)) > Marked_activate(X2) ; Marked_activate(n__take(X1,X2)) >= Marked_take(activate(X1),activate(X2)) ; Marked_take(s(N),cons(X,XS)) > Marked_activate(XS) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { from(X) >= cons(X,n__from(n__s(X))) ; from(X) >= n__from(X) ; head(cons(X,XS)) >= X ; activate(n__from(X)) >= from(activate(X)) ; activate(n__s(X)) >= s(activate(X)) ; activate(n__take(X1,X2)) >= take(activate(X1),activate(X2)) ; activate(X) >= X ; 2nd(cons(X,XS)) >= head(activate(XS)) ; take(0,XS) >= nil ; take(s(N),cons(X,XS)) >= cons(X,n__take(N,activate(XS))) ; take(X1,X2) >= n__take(X1,X2) ; s(X) >= n__s(X) ; sel(0,cons(X,XS)) >= X ; sel(s(N),cons(X,XS)) >= sel(N,activate(XS)) ; Marked_activate(n__from(X)) > Marked_activate(X) ; Marked_activate(n__s(X)) > Marked_activate(X) ; Marked_activate(n__take(X1,X2)) > Marked_activate(X1) ; Marked_activate(n__take(X1,X2)) > Marked_activate(X2) ; Marked_activate(n__take(X1,X2)) >= Marked_take(activate(X1),activate(X2)) ; Marked_take(s(N),cons(X,XS)) > Marked_activate(XS) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(795 bt (1001) [206]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 5.142875 seconds (real time) Cime Exit Status: 0