- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(pairNs) -> mark(cons(0,incr(oddNs))) [2] active(oddNs) -> mark(incr(pairNs)) [3] active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) [4] active(take(0,XS)) -> mark(nil) [5] active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) [6] active(zip(nil,XS)) -> mark(nil) [7] active(zip(X,nil)) -> mark(nil) [8] active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) [9] active(tail(cons(X,XS))) -> mark(XS) [10] active(repItems(nil)) -> mark(nil) [11] active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) [12] active(cons(X1,X2)) -> cons(active(X1),X2) [13] active(incr(X)) -> incr(active(X)) [14] active(s(X)) -> s(active(X)) [15] active(take(X1,X2)) -> take(active(X1),X2) [16] active(take(X1,X2)) -> take(X1,active(X2)) [17] active(zip(X1,X2)) -> zip(active(X1),X2) [18] active(zip(X1,X2)) -> zip(X1,active(X2)) [19] active(pair(X1,X2)) -> pair(active(X1),X2) [20] active(pair(X1,X2)) -> pair(X1,active(X2)) [21] active(tail(X)) -> tail(active(X)) [22] active(repItems(X)) -> repItems(active(X)) [23] cons(mark(X1),X2) -> mark(cons(X1,X2)) [24] incr(mark(X)) -> mark(incr(X)) [25] s(mark(X)) -> mark(s(X)) [26] take(mark(X1),X2) -> mark(take(X1,X2)) [27] take(X1,mark(X2)) -> mark(take(X1,X2)) [28] zip(mark(X1),X2) -> mark(zip(X1,X2)) [29] zip(X1,mark(X2)) -> mark(zip(X1,X2)) [30] pair(mark(X1),X2) -> mark(pair(X1,X2)) [31] pair(X1,mark(X2)) -> mark(pair(X1,X2)) [32] tail(mark(X)) -> mark(tail(X)) [33] repItems(mark(X)) -> mark(repItems(X)) [34] proper(pairNs) -> ok(pairNs) [35] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [36] proper(0) -> ok(0) [37] proper(incr(X)) -> incr(proper(X)) [38] proper(oddNs) -> ok(oddNs) [39] proper(s(X)) -> s(proper(X)) [40] proper(take(X1,X2)) -> take(proper(X1),proper(X2)) [41] proper(nil) -> ok(nil) [42] proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) [43] proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) [44] proper(tail(X)) -> tail(proper(X)) [45] proper(repItems(X)) -> repItems(proper(X)) [46] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [47] incr(ok(X)) -> ok(incr(X)) [48] s(ok(X)) -> ok(s(X)) [49] take(ok(X1),ok(X2)) -> ok(take(X1,X2)) [50] zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) [51] pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) [52] tail(ok(X)) -> ok(tail(X)) [53] repItems(ok(X)) -> ok(repItems(X)) [54] top(mark(X)) -> top(proper(X)) [55] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 11 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(incr(cons(X,XS))) >= mark(cons(s(X),incr(XS))) ; active(incr(X)) >= incr(active(X)) ; active(oddNs) >= mark(incr(pairNs)) ; active(pairNs) >= mark(cons(0,incr(oddNs))) ; active(s(X)) >= s(active(X)) ; active(take(0,XS)) >= mark(nil) ; active(take(s(N),cons(X,XS))) >= mark(cons(X,take(N,XS))) ; active(take(X1,X2)) >= take(active(X1),X2) ; active(take(X1,X2)) >= take(X1,active(X2)) ; active(zip(cons(X,XS),cons(Y,YS))) >= mark(cons(pair(X,Y),zip(XS,YS))) ; active(zip(nil,XS)) >= mark(nil) ; active(zip(X,nil)) >= mark(nil) ; active(zip(X1,X2)) >= zip(active(X1),X2) ; active(zip(X1,X2)) >= zip(X1,active(X2)) ; active(pair(X1,X2)) >= pair(active(X1),X2) ; active(pair(X1,X2)) >= pair(X1,active(X2)) ; active(tail(cons(X,XS))) >= mark(XS) ; active(tail(X)) >= tail(active(X)) ; active(repItems(cons(X,XS))) >= mark(cons(X,cons(X,repItems(XS)))) ; active(repItems(nil)) >= mark(nil) ; active(repItems(X)) >= repItems(active(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; take(mark(X1),X2) >= mark(take(X1,X2)) ; take(ok(X1),ok(X2)) >= ok(take(X1,X2)) ; take(X1,mark(X2)) >= mark(take(X1,X2)) ; zip(mark(X1),X2) >= mark(zip(X1,X2)) ; zip(ok(X1),ok(X2)) >= ok(zip(X1,X2)) ; zip(X1,mark(X2)) >= mark(zip(X1,X2)) ; pair(mark(X1),X2) >= mark(pair(X1,X2)) ; pair(ok(X1),ok(X2)) >= ok(pair(X1,X2)) ; pair(X1,mark(X2)) >= mark(pair(X1,X2)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; repItems(mark(X)) >= mark(repItems(X)) ; repItems(ok(X)) >= ok(repItems(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(incr(X)) >= incr(proper(X)) ; proper(oddNs) >= ok(oddNs) ; proper(pairNs) >= ok(pairNs) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(take(X1,X2)) >= take(proper(X1),proper(X2)) ; proper(zip(X1,X2)) >= zip(proper(X1),proper(X2)) ; proper(pair(X1,X2)) >= pair(proper(X1),proper(X2)) ; proper(tail(X)) >= tail(proper(X)) ; proper(repItems(X)) >= repItems(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(incr(cons(X,XS))) >= mark(cons(s(X),incr(XS))) ; active(incr(X)) >= incr(active(X)) ; active(oddNs) >= mark(incr(pairNs)) ; active(pairNs) >= mark(cons(0,incr(oddNs))) ; active(s(X)) >= s(active(X)) ; active(take(0,XS)) >= mark(nil) ; active(take(s(N),cons(X,XS))) >= mark(cons(X,take(N,XS))) ; active(take(X1,X2)) >= take(active(X1),X2) ; active(take(X1,X2)) >= take(X1,active(X2)) ; active(zip(cons(X,XS),cons(Y,YS))) >= mark(cons(pair(X,Y),zip(XS,YS))) ; active(zip(nil,XS)) >= mark(nil) ; active(zip(X,nil)) >= mark(nil) ; active(zip(X1,X2)) >= zip(active(X1),X2) ; active(zip(X1,X2)) >= zip(X1,active(X2)) ; active(pair(X1,X2)) >= pair(active(X1),X2) ; active(pair(X1,X2)) >= pair(X1,active(X2)) ; active(tail(cons(X,XS))) >= mark(XS) ; active(tail(X)) >= tail(active(X)) ; active(repItems(cons(X,XS))) >= mark(cons(X,cons(X,repItems(XS)))) ; active(repItems(nil)) >= mark(nil) ; active(repItems(X)) >= repItems(active(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; take(mark(X1),X2) >= mark(take(X1,X2)) ; take(ok(X1),ok(X2)) >= ok(take(X1,X2)) ; take(X1,mark(X2)) >= mark(take(X1,X2)) ; zip(mark(X1),X2) >= mark(zip(X1,X2)) ; zip(ok(X1),ok(X2)) >= ok(zip(X1,X2)) ; zip(X1,mark(X2)) >= mark(zip(X1,X2)) ; pair(mark(X1),X2) >= mark(pair(X1,X2)) ; pair(ok(X1),ok(X2)) >= ok(pair(X1,X2)) ; pair(X1,mark(X2)) >= mark(pair(X1,X2)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; repItems(mark(X)) >= mark(repItems(X)) ; repItems(ok(X)) >= ok(repItems(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(incr(X)) >= incr(proper(X)) ; proper(oddNs) >= ok(oddNs) ; proper(pairNs) >= ok(pairNs) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(take(X1,X2)) >= take(proper(X1),proper(X2)) ; proper(zip(X1,X2)) >= zip(proper(X1),proper(X2)) ; proper(pair(X1,X2)) >= pair(proper(X1),proper(X2)) ; proper(tail(X)) >= tail(proper(X)) ; proper(repItems(X)) >= repItems(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; incr(mark(X)) >= mark(incr(X)) ; incr(ok(X)) >= ok(incr(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(incr(cons(X,XS))) >= mark(cons(s(X),incr(XS))) ; active(incr(X)) >= incr(active(X)) ; active(oddNs) >= mark(incr(pairNs)) ; active(pairNs) >= mark(cons(0,incr(oddNs))) ; active(s(X)) >= s(active(X)) ; active(take(0,XS)) >= mark(nil) ; active(take(s(N),cons(X,XS))) >= mark(cons(X,take(N,XS))) ; active(take(X1,X2)) >= take(active(X1),X2) ; active(take(X1,X2)) >= take(X1,active(X2)) ; active(zip(cons(X,XS),cons(Y,YS))) >= mark(cons(pair(X,Y),zip(XS,YS))) ; active(zip(nil,XS)) >= mark(nil) ; active(zip(X,nil)) >= mark(nil) ; active(zip(X1,X2)) >= zip(active(X1),X2) ; active(zip(X1,X2)) >= zip(X1,active(X2)) ; active(pair(X1,X2)) >= pair(active(X1),X2) ; active(pair(X1,X2)) >= pair(X1,active(X2)) ; active(tail(cons(X,XS))) >= mark(XS) ; active(tail(X)) >= tail(active(X)) ; active(repItems(cons(X,XS))) >= mark(cons(X,cons(X,repItems(XS)))) ; active(repItems(nil)) >= mark(nil) ; active(repItems(X)) >= repItems(active(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; take(mark(X1),X2) >= mark(take(X1,X2)) ; take(ok(X1),ok(X2)) >= ok(take(X1,X2)) ; take(X1,mark(X2)) >= mark(take(X1,X2)) ; zip(mark(X1),X2) >= mark(zip(X1,X2)) ; zip(ok(X1),ok(X2)) >= ok(zip(X1,X2)) ; zip(X1,mark(X2)) >= mark(zip(X1,X2)) ; pair(mark(X1),X2) >= mark(pair(X1,X2)) ; pair(ok(X1),ok(X2)) >= ok(pair(X1,X2)) ; pair(X1,mark(X2)) >= mark(pair(X1,X2)) ; tail(mark(X)) >= mark(tail(X)) ; tail(ok(X)) >= ok(tail(X)) ; repItems(mark(X)) >= mark(repItems(X)) ; repItems(ok(X)) >= ok(repItems(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(incr(X)) >= incr(proper(X)) ; proper(oddNs) >= ok(oddNs) ; proper(pairNs) >= ok(pairNs) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(take(X1,X2)) >= take(proper(X1),proper(X2)) ; proper(zip(X1,X2)) >= zip(proper(X1),proper(X2)) ; proper(pair(X1,X2)) >= pair(proper(X1),proper(X2)) ; proper(tail(X)) >= tail(proper(X)) ; proper(repItems(X)) >= repItems(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(6847 bt (10110) [285]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 112.012034 seconds (real time) Cime Exit Status: 0