- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(from(X)) -> mark(cons(X,from(s(X)))) [2] active(after(0,XS)) -> mark(XS) [3] active(after(s(N),cons(X,XS))) -> mark(after(N,XS)) [4] active(from(X)) -> from(active(X)) [5] active(cons(X1,X2)) -> cons(active(X1),X2) [6] active(s(X)) -> s(active(X)) [7] active(after(X1,X2)) -> after(active(X1),X2) [8] active(after(X1,X2)) -> after(X1,active(X2)) [9] from(mark(X)) -> mark(from(X)) [10] cons(mark(X1),X2) -> mark(cons(X1,X2)) [11] s(mark(X)) -> mark(s(X)) [12] after(mark(X1),X2) -> mark(after(X1,X2)) [13] after(X1,mark(X2)) -> mark(after(X1,X2)) [14] proper(from(X)) -> from(proper(X)) [15] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [16] proper(s(X)) -> s(proper(X)) [17] proper(after(X1,X2)) -> after(proper(X1),proper(X2)) [18] proper(0) -> ok(0) [19] from(ok(X)) -> ok(from(X)) [20] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [21] s(ok(X)) -> ok(s(X)) [22] after(ok(X1),ok(X2)) -> ok(after(X1,X2)) [23] top(mark(X)) -> top(proper(X)) [24] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 7 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; from(mark(X)) >= mark(from(X)) ; from(ok(X)) >= ok(from(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; active(from(X)) >= from(active(X)) ; active(s(X)) >= s(active(X)) ; active(after(s(N),cons(X,XS))) >= mark(after(N,XS)) ; active(after(0,XS)) >= mark(XS) ; active(after(X1,X2)) >= after(active(X1),X2) ; active(after(X1,X2)) >= after(X1,active(X2)) ; after(mark(X1),X2) >= mark(after(X1,X2)) ; after(ok(X1),ok(X2)) >= ok(after(X1,X2)) ; after(X1,mark(X2)) >= mark(after(X1,X2)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(after(X1,X2)) >= after(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; from(mark(X)) >= mark(from(X)) ; from(ok(X)) >= ok(from(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; active(from(X)) >= from(active(X)) ; active(s(X)) >= s(active(X)) ; active(after(s(N),cons(X,XS))) >= mark(after(N,XS)) ; active(after(0,XS)) >= mark(XS) ; active(after(X1,X2)) >= after(active(X1),X2) ; active(after(X1,X2)) >= after(X1,active(X2)) ; after(mark(X1),X2) >= mark(after(X1,X2)) ; after(ok(X1),ok(X2)) >= ok(after(X1,X2)) ; after(X1,mark(X2)) >= mark(after(X1,X2)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(after(X1,X2)) >= after(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; from(mark(X)) >= mark(from(X)) ; from(ok(X)) >= ok(from(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; active(from(X)) >= from(active(X)) ; active(s(X)) >= s(active(X)) ; active(after(s(N),cons(X,XS))) >= mark(after(N,XS)) ; active(after(0,XS)) >= mark(XS) ; active(after(X1,X2)) >= after(active(X1),X2) ; active(after(X1,X2)) >= after(X1,active(X2)) ; after(mark(X1),X2) >= mark(after(X1,X2)) ; after(ok(X1),ok(X2)) >= ok(after(X1,X2)) ; after(X1,mark(X2)) >= mark(after(X1,X2)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(after(X1,X2)) >= after(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(1277 bt (1762) [91]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 49.332243 seconds (real time) Cime Exit Status: 0