- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(dbl(0)) -> mark(0) [2] active(dbl(s(X))) -> mark(s(s(dbl(X)))) [3] active(dbls(nil)) -> mark(nil) [4] active(dbls(cons(X,Y))) -> mark(cons(dbl(X),dbls(Y))) [5] active(sel(0,cons(X,Y))) -> mark(X) [6] active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z)) [7] active(indx(nil,X)) -> mark(nil) [8] active(indx(cons(X,Y),Z)) -> mark(cons(sel(X,Z),indx(Y,Z))) [9] active(from(X)) -> mark(cons(X,from(s(X)))) [10] mark(dbl(X)) -> active(dbl(mark(X))) [11] mark(0) -> active(0) [12] mark(s(X)) -> active(s(X)) [13] mark(dbls(X)) -> active(dbls(mark(X))) [14] mark(nil) -> active(nil) [15] mark(cons(X1,X2)) -> active(cons(X1,X2)) [16] mark(sel(X1,X2)) -> active(sel(mark(X1),mark(X2))) [17] mark(indx(X1,X2)) -> active(indx(mark(X1),X2)) [18] mark(from(X)) -> active(from(X)) [19] dbl(mark(X)) -> dbl(X) [20] dbl(active(X)) -> dbl(X) [21] s(mark(X)) -> s(X) [22] s(active(X)) -> s(X) [23] dbls(mark(X)) -> dbls(X) [24] dbls(active(X)) -> dbls(X) [25] cons(mark(X1),X2) -> cons(X1,X2) [26] cons(X1,mark(X2)) -> cons(X1,X2) [27] cons(active(X1),X2) -> cons(X1,X2) [28] cons(X1,active(X2)) -> cons(X1,X2) [29] sel(mark(X1),X2) -> sel(X1,X2) [30] sel(X1,mark(X2)) -> sel(X1,X2) [31] sel(active(X1),X2) -> sel(X1,X2) [32] sel(X1,active(X2)) -> sel(X1,X2) [33] indx(mark(X1),X2) -> indx(X1,X2) [34] indx(X1,mark(X2)) -> indx(X1,X2) [35] indx(active(X1),X2) -> indx(X1,X2) [36] indx(X1,active(X2)) -> indx(X1,X2) [37] from(mark(X)) -> from(X) [38] from(active(X)) -> from(X) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { mark(0) >= active(0) ; mark(dbl(X)) >= active(dbl(mark(X))) ; mark(s(X)) >= active(s(X)) ; mark(nil) >= active(nil) ; mark(dbls(X)) >= active(dbls(mark(X))) ; mark(cons(X1,X2)) >= active(cons(X1,X2)) ; mark(sel(X1,X2)) >= active(sel(mark(X1),mark(X2))) ; mark(indx(X1,X2)) >= active(indx(mark(X1),X2)) ; mark(from(X)) >= active(from(X)) ; active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= dbl(X) ; dbl(active(X)) >= dbl(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; dbls(mark(X)) >= dbls(X) ; dbls(active(X)) >= dbls(X) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; sel(mark(X1),X2) >= sel(X1,X2) ; sel(active(X1),X2) >= sel(X1,X2) ; sel(X1,mark(X2)) >= sel(X1,X2) ; sel(X1,active(X2)) >= sel(X1,X2) ; indx(mark(X1),X2) >= indx(X1,X2) ; indx(active(X1),X2) >= indx(X1,X2) ; indx(X1,mark(X2)) >= indx(X1,X2) ; indx(X1,active(X2)) >= indx(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; Marked_mark(dbl(X)) >= Marked_mark(X) ; Marked_mark(dbl(X)) >= Marked_active(dbl(mark(X))) ; Marked_mark(s(X)) >= Marked_active(s(X)) ; Marked_mark(dbls(X)) >= Marked_mark(X) ; Marked_mark(dbls(X)) >= Marked_active(dbls(mark(X))) ; Marked_mark(cons(X1,X2)) >= Marked_active(cons(X1,X2)) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X1) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X2) ; Marked_mark(sel(X1,X2)) >= Marked_active(sel(mark(X1),mark(X2))) ; Marked_mark(indx(X1,X2)) >= Marked_mark(X1) ; Marked_mark(indx(X1,X2)) >= Marked_active(indx(mark(X1),X2)) ; Marked_mark(from(X)) >= Marked_active(from(X)) ; Marked_active(dbl(s(X))) >= Marked_mark(s(s(dbl(X)))) ; Marked_active(dbls(cons(X,Y))) >= Marked_mark(cons(dbl(X),dbls(Y))) ; Marked_active(sel(0,cons(X,Y))) >= Marked_mark(X) ; Marked_active(sel(s(X),cons(Y,Z))) >= Marked_mark(sel(X,Z)) ; Marked_active(indx(cons(X,Y),Z)) >= Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; Marked_active(from(X)) >= Marked_mark(cons(X,from(s(X)))) ; } + Disjunctions:{ { Marked_mark(dbl(X)) > Marked_mark(X) ; } { Marked_mark(dbl(X)) > Marked_active(dbl(mark(X))) ; } { Marked_mark(s(X)) > Marked_active(s(X)) ; } { Marked_mark(dbls(X)) > Marked_mark(X) ; } { Marked_mark(dbls(X)) > Marked_active(dbls(mark(X))) ; } { Marked_mark(cons(X1,X2)) > Marked_active(cons(X1,X2)) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(sel(X1,X2)) > Marked_active(sel(mark(X1),mark(X2))) ; } { Marked_mark(indx(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(indx(X1,X2)) > Marked_active(indx(mark(X1),X2)) ; } { Marked_mark(from(X)) > Marked_active(from(X)) ; } { Marked_active(dbl(s(X))) > Marked_mark(s(s(dbl(X)))) ; } { Marked_active(dbls(cons(X,Y))) > Marked_mark(cons(dbl(X),dbls(Y))) ; } { Marked_active(sel(0,cons(X,Y))) > Marked_mark(X) ; } { Marked_active(sel(s(X),cons(Y,Z))) > Marked_mark(sel(X,Z)) ; } { Marked_active(indx(cons(X,Y),Z)) > Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; } { Marked_active(from(X)) > Marked_mark(cons(X,from(s(X)))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: mark(0) >= active(0) constraint: mark(dbl(X)) >= active(dbl(mark(X))) constraint: mark(s(X)) >= active(s(X)) constraint: mark(nil) >= active(nil) constraint: mark(dbls(X)) >= active(dbls(mark(X))) constraint: mark(cons(X1,X2)) >= active(cons(X1,X2)) constraint: mark(sel(X1,X2)) >= active(sel(mark(X1),mark(X2))) constraint: mark(indx(X1,X2)) >= active(indx(mark(X1),X2)) constraint: mark(from(X)) >= active(from(X)) constraint: active(dbl(0)) >= mark(0) constraint: active(dbl(s(X))) >= mark(s(s(dbl(X)))) constraint: active(dbls(nil)) >= mark(nil) constraint: active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) constraint: active(sel(0,cons(X,Y))) >= mark(X) constraint: active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) constraint: active(indx(nil,X)) >= mark(nil) constraint: active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) constraint: active(from(X)) >= mark(cons(X,from(s(X)))) constraint: dbl(mark(X)) >= dbl(X) constraint: dbl(active(X)) >= dbl(X) constraint: s(mark(X)) >= s(X) constraint: s(active(X)) >= s(X) constraint: dbls(mark(X)) >= dbls(X) constraint: dbls(active(X)) >= dbls(X) constraint: cons(mark(X1),X2) >= cons(X1,X2) constraint: cons(active(X1),X2) >= cons(X1,X2) constraint: cons(X1,mark(X2)) >= cons(X1,X2) constraint: cons(X1,active(X2)) >= cons(X1,X2) constraint: sel(mark(X1),X2) >= sel(X1,X2) constraint: sel(active(X1),X2) >= sel(X1,X2) constraint: sel(X1,mark(X2)) >= sel(X1,X2) constraint: sel(X1,active(X2)) >= sel(X1,X2) constraint: indx(mark(X1),X2) >= indx(X1,X2) constraint: indx(active(X1),X2) >= indx(X1,X2) constraint: indx(X1,mark(X2)) >= indx(X1,X2) constraint: indx(X1,active(X2)) >= indx(X1,X2) constraint: from(mark(X)) >= from(X) constraint: from(active(X)) >= from(X) constraint: Marked_mark(dbl(X)) >= Marked_mark(X) constraint: Marked_mark(dbl(X)) >= Marked_active(dbl(mark(X))) constraint: Marked_mark(s(X)) >= Marked_active(s(X)) constraint: Marked_mark(dbls(X)) >= Marked_mark(X) constraint: Marked_mark(dbls(X)) >= Marked_active(dbls(mark(X))) constraint: Marked_mark(cons(X1,X2)) >= Marked_active(cons(X1,X2)) constraint: Marked_mark(sel(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(sel(X1,X2)) >= Marked_mark(X2) constraint: Marked_mark(sel(X1,X2)) >= Marked_active(sel(mark(X1),mark(X2))) constraint: Marked_mark(indx(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(indx(X1,X2)) >= Marked_active(indx(mark(X1),X2)) constraint: Marked_mark(from(X)) >= Marked_active(from(X)) constraint: Marked_active(dbl(s(X))) >= Marked_mark(s(s(dbl(X)))) constraint: Marked_active(dbls(cons(X,Y))) >= Marked_mark(cons(dbl(X),dbls(Y))) constraint: Marked_active(sel(0,cons(X,Y))) >= Marked_mark(X) constraint: Marked_active(sel(s(X),cons(Y,Z))) >= Marked_mark(sel(X,Z)) constraint: Marked_active(indx(cons(X,Y),Z)) >= Marked_mark(cons(sel(X,Z), indx(Y,Z))) constraint: Marked_active(from(X)) >= Marked_mark(cons(X,from(s(X)))) APPLY CRITERIA (Subterm criterion) ST: Marked_dbl -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_s -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_dbls -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_cons -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_sel -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_indx -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_from -> 1 APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { mark(0) >= active(0) ; mark(dbl(X)) >= active(dbl(mark(X))) ; mark(s(X)) >= active(s(X)) ; mark(nil) >= active(nil) ; mark(dbls(X)) >= active(dbls(mark(X))) ; mark(cons(X1,X2)) >= active(cons(X1,X2)) ; mark(sel(X1,X2)) >= active(sel(mark(X1),mark(X2))) ; mark(indx(X1,X2)) >= active(indx(mark(X1),X2)) ; mark(from(X)) >= active(from(X)) ; active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= dbl(X) ; dbl(active(X)) >= dbl(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; dbls(mark(X)) >= dbls(X) ; dbls(active(X)) >= dbls(X) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; sel(mark(X1),X2) >= sel(X1,X2) ; sel(active(X1),X2) >= sel(X1,X2) ; sel(X1,mark(X2)) >= sel(X1,X2) ; sel(X1,active(X2)) >= sel(X1,X2) ; indx(mark(X1),X2) >= indx(X1,X2) ; indx(active(X1),X2) >= indx(X1,X2) ; indx(X1,mark(X2)) >= indx(X1,X2) ; indx(X1,active(X2)) >= indx(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; Marked_mark(dbl(X)) >= Marked_mark(X) ; Marked_mark(dbl(X)) >= Marked_active(dbl(mark(X))) ; Marked_mark(dbls(X)) >= Marked_mark(X) ; Marked_mark(dbls(X)) >= Marked_active(dbls(mark(X))) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X1) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X2) ; Marked_mark(sel(X1,X2)) >= Marked_active(sel(mark(X1),mark(X2))) ; Marked_mark(indx(X1,X2)) >= Marked_mark(X1) ; Marked_mark(indx(X1,X2)) >= Marked_active(indx(mark(X1),X2)) ; Marked_mark(from(X)) >= Marked_active(from(X)) ; Marked_active(dbl(s(X))) >= Marked_mark(s(s(dbl(X)))) ; Marked_active(dbls(cons(X,Y))) >= Marked_mark(cons(dbl(X),dbls(Y))) ; Marked_active(sel(0,cons(X,Y))) >= Marked_mark(X) ; Marked_active(sel(s(X),cons(Y,Z))) >= Marked_mark(sel(X,Z)) ; Marked_active(indx(cons(X,Y),Z)) >= Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; Marked_active(from(X)) >= Marked_mark(cons(X,from(s(X)))) ; } + Disjunctions:{ { Marked_mark(dbl(X)) > Marked_mark(X) ; } { Marked_mark(dbl(X)) > Marked_active(dbl(mark(X))) ; } { Marked_mark(dbls(X)) > Marked_mark(X) ; } { Marked_mark(dbls(X)) > Marked_active(dbls(mark(X))) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(sel(X1,X2)) > Marked_active(sel(mark(X1),mark(X2))) ; } { Marked_mark(indx(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(indx(X1,X2)) > Marked_active(indx(mark(X1),X2)) ; } { Marked_mark(from(X)) > Marked_active(from(X)) ; } { Marked_active(dbl(s(X))) > Marked_mark(s(s(dbl(X)))) ; } { Marked_active(dbls(cons(X,Y))) > Marked_mark(cons(dbl(X),dbls(Y))) ; } { Marked_active(sel(0,cons(X,Y))) > Marked_mark(X) ; } { Marked_active(sel(s(X),cons(Y,Z))) > Marked_mark(sel(X,Z)) ; } { Marked_active(indx(cons(X,Y),Z)) > Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; } { Marked_active(from(X)) > Marked_mark(cons(X,from(s(X)))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { mark(0) >= active(0) ; mark(dbl(X)) >= active(dbl(mark(X))) ; mark(s(X)) >= active(s(X)) ; mark(nil) >= active(nil) ; mark(dbls(X)) >= active(dbls(mark(X))) ; mark(cons(X1,X2)) >= active(cons(X1,X2)) ; mark(sel(X1,X2)) >= active(sel(mark(X1),mark(X2))) ; mark(indx(X1,X2)) >= active(indx(mark(X1),X2)) ; mark(from(X)) >= active(from(X)) ; active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= dbl(X) ; dbl(active(X)) >= dbl(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; dbls(mark(X)) >= dbls(X) ; dbls(active(X)) >= dbls(X) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; sel(mark(X1),X2) >= sel(X1,X2) ; sel(active(X1),X2) >= sel(X1,X2) ; sel(X1,mark(X2)) >= sel(X1,X2) ; sel(X1,active(X2)) >= sel(X1,X2) ; indx(mark(X1),X2) >= indx(X1,X2) ; indx(active(X1),X2) >= indx(X1,X2) ; indx(X1,mark(X2)) >= indx(X1,X2) ; indx(X1,active(X2)) >= indx(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; Marked_mark(dbl(X)) > Marked_mark(X) ; Marked_mark(dbl(X)) > Marked_active(dbl(mark(X))) ; Marked_mark(dbls(X)) > Marked_mark(X) ; Marked_mark(dbls(X)) > Marked_active(dbls(mark(X))) ; Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; Marked_mark(sel(X1,X2)) > Marked_active(sel(mark(X1),mark(X2))) ; Marked_mark(indx(X1,X2)) > Marked_mark(X1) ; Marked_mark(indx(X1,X2)) > Marked_active(indx(mark(X1),X2)) ; Marked_mark(from(X)) >= Marked_active(from(X)) ; Marked_active(dbl(s(X))) > Marked_mark(s(s(dbl(X)))) ; Marked_active(dbls(cons(X,Y))) > Marked_mark(cons(dbl(X),dbls(Y))) ; Marked_active(sel(0,cons(X,Y))) > Marked_mark(X) ; Marked_active(sel(s(X),cons(Y,Z))) > Marked_mark(sel(X,Z)) ; Marked_active(indx(cons(X,Y),Z)) > Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; Marked_active(from(X)) > Marked_mark(cons(X,from(s(X)))) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { mark(0) >= active(0) ; mark(dbl(X)) >= active(dbl(mark(X))) ; mark(s(X)) >= active(s(X)) ; mark(nil) >= active(nil) ; mark(dbls(X)) >= active(dbls(mark(X))) ; mark(cons(X1,X2)) >= active(cons(X1,X2)) ; mark(sel(X1,X2)) >= active(sel(mark(X1),mark(X2))) ; mark(indx(X1,X2)) >= active(indx(mark(X1),X2)) ; mark(from(X)) >= active(from(X)) ; active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= dbl(X) ; dbl(active(X)) >= dbl(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; dbls(mark(X)) >= dbls(X) ; dbls(active(X)) >= dbls(X) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; sel(mark(X1),X2) >= sel(X1,X2) ; sel(active(X1),X2) >= sel(X1,X2) ; sel(X1,mark(X2)) >= sel(X1,X2) ; sel(X1,active(X2)) >= sel(X1,X2) ; indx(mark(X1),X2) >= indx(X1,X2) ; indx(active(X1),X2) >= indx(X1,X2) ; indx(X1,mark(X2)) >= indx(X1,X2) ; indx(X1,active(X2)) >= indx(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; Marked_mark(dbl(X)) > Marked_mark(X) ; Marked_mark(dbl(X)) > Marked_active(dbl(mark(X))) ; Marked_mark(dbls(X)) > Marked_mark(X) ; Marked_mark(dbls(X)) > Marked_active(dbls(mark(X))) ; Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; Marked_mark(sel(X1,X2)) > Marked_active(sel(mark(X1),mark(X2))) ; Marked_mark(indx(X1,X2)) > Marked_mark(X1) ; Marked_mark(indx(X1,X2)) > Marked_active(indx(mark(X1),X2)) ; Marked_mark(from(X)) >= Marked_active(from(X)) ; Marked_active(dbl(s(X))) > Marked_mark(s(s(dbl(X)))) ; Marked_active(dbls(cons(X,Y))) > Marked_mark(cons(dbl(X),dbls(Y))) ; Marked_active(sel(0,cons(X,Y))) > Marked_mark(X) ; Marked_active(sel(s(X),cons(Y,Z))) > Marked_mark(sel(X,Z)) ; Marked_active(indx(cons(X,Y),Z)) > Marked_mark(cons(sel(X,Z),indx(Y,Z))) ; Marked_active(from(X)) > Marked_mark(cons(X,from(s(X)))) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(704 bt (724) [389]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Subterm criterion) ST: Marked_cons -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Subterm criterion) ST: Marked_sel -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Subterm criterion) ST: Marked_indx -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: NOT SOLVED No proof found Cime worked for 91.456660 seconds (real time) Cime Exit Status: 0