- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(dbl(0)) -> mark(0) [2] active(dbl(s(X))) -> mark(s(s(dbl(X)))) [3] active(dbls(nil)) -> mark(nil) [4] active(dbls(cons(X,Y))) -> mark(cons(dbl(X),dbls(Y))) [5] active(sel(0,cons(X,Y))) -> mark(X) [6] active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z)) [7] active(indx(nil,X)) -> mark(nil) [8] active(indx(cons(X,Y),Z)) -> mark(cons(sel(X,Z),indx(Y,Z))) [9] active(from(X)) -> mark(cons(X,from(s(X)))) [10] active(dbl(X)) -> dbl(active(X)) [11] active(dbls(X)) -> dbls(active(X)) [12] active(sel(X1,X2)) -> sel(active(X1),X2) [13] active(sel(X1,X2)) -> sel(X1,active(X2)) [14] active(indx(X1,X2)) -> indx(active(X1),X2) [15] dbl(mark(X)) -> mark(dbl(X)) [16] dbls(mark(X)) -> mark(dbls(X)) [17] sel(mark(X1),X2) -> mark(sel(X1,X2)) [18] sel(X1,mark(X2)) -> mark(sel(X1,X2)) [19] indx(mark(X1),X2) -> mark(indx(X1,X2)) [20] proper(dbl(X)) -> dbl(proper(X)) [21] proper(0) -> ok(0) [22] proper(s(X)) -> s(proper(X)) [23] proper(dbls(X)) -> dbls(proper(X)) [24] proper(nil) -> ok(nil) [25] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [26] proper(sel(X1,X2)) -> sel(proper(X1),proper(X2)) [27] proper(indx(X1,X2)) -> indx(proper(X1),proper(X2)) [28] proper(from(X)) -> from(proper(X)) [29] dbl(ok(X)) -> ok(dbl(X)) [30] s(ok(X)) -> ok(s(X)) [31] dbls(ok(X)) -> ok(dbls(X)) [32] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [33] sel(ok(X1),ok(X2)) -> ok(sel(X1,X2)) [34] indx(ok(X1),ok(X2)) -> ok(indx(X1,X2)) [35] from(ok(X)) -> ok(from(X)) [36] top(mark(X)) -> top(proper(X)) [37] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 10 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> } { --> } { --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbl(X)) >= dbl(active(X)) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(dbls(X)) >= dbls(active(X)) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(sel(X1,X2)) >= sel(active(X1),X2) ; active(sel(X1,X2)) >= sel(X1,active(X2)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(indx(X1,X2)) >= indx(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= mark(dbl(X)) ; dbl(ok(X)) >= ok(dbl(X)) ; s(ok(X)) >= ok(s(X)) ; dbls(mark(X)) >= mark(dbls(X)) ; dbls(ok(X)) >= ok(dbls(X)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; sel(mark(X1),X2) >= mark(sel(X1,X2)) ; sel(ok(X1),ok(X2)) >= ok(sel(X1,X2)) ; sel(X1,mark(X2)) >= mark(sel(X1,X2)) ; indx(mark(X1),X2) >= mark(indx(X1,X2)) ; indx(ok(X1),ok(X2)) >= ok(indx(X1,X2)) ; from(ok(X)) >= ok(from(X)) ; proper(0) >= ok(0) ; proper(dbl(X)) >= dbl(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(dbls(X)) >= dbls(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(sel(X1,X2)) >= sel(proper(X1),proper(X2)) ; proper(indx(X1,X2)) >= indx(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbl(X)) >= dbl(active(X)) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(dbls(X)) >= dbls(active(X)) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(sel(X1,X2)) >= sel(active(X1),X2) ; active(sel(X1,X2)) >= sel(X1,active(X2)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(indx(X1,X2)) >= indx(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= mark(dbl(X)) ; dbl(ok(X)) >= ok(dbl(X)) ; s(ok(X)) >= ok(s(X)) ; dbls(mark(X)) >= mark(dbls(X)) ; dbls(ok(X)) >= ok(dbls(X)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; sel(mark(X1),X2) >= mark(sel(X1,X2)) ; sel(ok(X1),ok(X2)) >= ok(sel(X1,X2)) ; sel(X1,mark(X2)) >= mark(sel(X1,X2)) ; indx(mark(X1),X2) >= mark(indx(X1,X2)) ; indx(ok(X1),ok(X2)) >= ok(indx(X1,X2)) ; from(ok(X)) >= ok(from(X)) ; proper(0) >= ok(0) ; proper(dbl(X)) >= dbl(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(dbls(X)) >= dbls(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(sel(X1,X2)) >= sel(proper(X1),proper(X2)) ; proper(indx(X1,X2)) >= indx(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { active(dbl(0)) >= mark(0) ; active(dbl(s(X))) >= mark(s(s(dbl(X)))) ; active(dbl(X)) >= dbl(active(X)) ; active(dbls(nil)) >= mark(nil) ; active(dbls(cons(X,Y))) >= mark(cons(dbl(X),dbls(Y))) ; active(dbls(X)) >= dbls(active(X)) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(sel(X1,X2)) >= sel(active(X1),X2) ; active(sel(X1,X2)) >= sel(X1,active(X2)) ; active(indx(nil,X)) >= mark(nil) ; active(indx(cons(X,Y),Z)) >= mark(cons(sel(X,Z),indx(Y,Z))) ; active(indx(X1,X2)) >= indx(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; dbl(mark(X)) >= mark(dbl(X)) ; dbl(ok(X)) >= ok(dbl(X)) ; s(ok(X)) >= ok(s(X)) ; dbls(mark(X)) >= mark(dbls(X)) ; dbls(ok(X)) >= ok(dbls(X)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; sel(mark(X1),X2) >= mark(sel(X1,X2)) ; sel(ok(X1),ok(X2)) >= ok(sel(X1,X2)) ; sel(X1,mark(X2)) >= mark(sel(X1,X2)) ; indx(mark(X1),X2) >= mark(indx(X1,X2)) ; indx(ok(X1),ok(X2)) >= ok(indx(X1,X2)) ; from(ok(X)) >= ok(from(X)) ; proper(0) >= ok(0) ; proper(dbl(X)) >= dbl(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(nil) >= ok(nil) ; proper(dbls(X)) >= dbls(proper(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(sel(X1,X2)) >= sel(proper(X1),proper(X2)) ; proper(indx(X1,X2)) >= indx(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) > Marked_top(proper(X)) ; Marked_top(ok(X)) > Marked_top(active(X)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(6726 bt (9858) [519]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 83.915627 seconds (real time) Cime Exit Status: 0