- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] eq(n__0,n__0) -> true [2] eq(n__s(X),n__s(Y)) -> eq(activate(X),activate(Y)) [3] eq(X,Y) -> false [4] inf(X) -> cons(X,n__inf(s(X))) [5] take(0,X) -> nil [6] take(s(X),cons(Y,L)) -> cons(activate(Y),n__take(activate(X),activate(L))) [7] length(nil) -> 0 [8] length(cons(X,L)) -> s(n__length(activate(L))) [9] 0 -> n__0 [10] s(X) -> n__s(X) [11] inf(X) -> n__inf(X) [12] take(X1,X2) -> n__take(X1,X2) [13] length(X) -> n__length(X) [14] activate(n__0) -> 0 [15] activate(n__s(X)) -> s(X) [16] activate(n__inf(X)) -> inf(X) [17] activate(n__take(X1,X2)) -> take(X1,X2) [18] activate(n__length(X)) -> length(X) [19] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> } { --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { eq(n__0,n__0) >= true ; eq(n__s(X),n__s(Y)) >= eq(activate(X),activate(Y)) ; eq(X,Y) >= false ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(X) ; activate(n__inf(X)) >= inf(X) ; activate(n__take(X1,X2)) >= take(X1,X2) ; activate(n__length(X)) >= length(X) ; activate(X) >= X ; s(X) >= n__s(X) ; inf(X) >= cons(X,n__inf(s(X))) ; inf(X) >= n__inf(X) ; take(s(X),cons(Y,L)) >= cons(activate(Y),n__take(activate(X),activate(L))) ; take(0,X) >= nil ; take(X1,X2) >= n__take(X1,X2) ; 0 >= n__0 ; length(cons(X,L)) >= s(n__length(activate(L))) ; length(nil) >= 0 ; length(X) >= n__length(X) ; Marked_eq(n__s(X),n__s(Y)) >= Marked_eq(activate(X),activate(Y)) ; } + Disjunctions:{ { Marked_eq(n__s(X),n__s(Y)) > Marked_eq(activate(X),activate(Y)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { eq(n__0,n__0) >= true ; eq(n__s(X),n__s(Y)) >= eq(activate(X),activate(Y)) ; eq(X,Y) >= false ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(X) ; activate(n__inf(X)) >= inf(X) ; activate(n__take(X1,X2)) >= take(X1,X2) ; activate(n__length(X)) >= length(X) ; activate(X) >= X ; s(X) >= n__s(X) ; inf(X) >= cons(X,n__inf(s(X))) ; inf(X) >= n__inf(X) ; take(s(X),cons(Y,L)) >= cons(activate(Y),n__take(activate(X),activate(L))) ; take(0,X) >= nil ; take(X1,X2) >= n__take(X1,X2) ; 0 >= n__0 ; length(cons(X,L)) >= s(n__length(activate(L))) ; length(nil) >= 0 ; length(X) >= n__length(X) ; Marked_eq(n__s(X),n__s(Y)) > Marked_eq(activate(X),activate(Y)) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { eq(n__0,n__0) >= true ; eq(n__s(X),n__s(Y)) >= eq(activate(X),activate(Y)) ; eq(X,Y) >= false ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(X) ; activate(n__inf(X)) >= inf(X) ; activate(n__take(X1,X2)) >= take(X1,X2) ; activate(n__length(X)) >= length(X) ; activate(X) >= X ; s(X) >= n__s(X) ; inf(X) >= cons(X,n__inf(s(X))) ; inf(X) >= n__inf(X) ; take(s(X),cons(Y,L)) >= cons(activate(Y),n__take(activate(X),activate(L))) ; take(0,X) >= nil ; take(X1,X2) >= n__take(X1,X2) ; 0 >= n__0 ; length(cons(X,L)) >= s(n__length(activate(L))) ; length(nil) >= 0 ; length(X) >= n__length(X) ; Marked_eq(n__s(X),n__s(Y)) > Marked_eq(activate(X),activate(Y)) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === No solution found for these parameters.(2545 bt (3439) [262]) === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 101.968054 seconds (real time) Cime Exit Status: 0