- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(eq(0,0)) -> mark(true) [2] active(eq(s(X),s(Y))) -> mark(eq(X,Y)) [3] active(eq(X,Y)) -> mark(false) [4] active(inf(X)) -> mark(cons(X,inf(s(X)))) [5] active(take(0,X)) -> mark(nil) [6] active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) [7] active(length(nil)) -> mark(0) [8] active(length(cons(X,L))) -> mark(s(length(L))) [9] active(inf(X)) -> inf(active(X)) [10] active(take(X1,X2)) -> take(active(X1),X2) [11] active(take(X1,X2)) -> take(X1,active(X2)) [12] active(length(X)) -> length(active(X)) [13] inf(mark(X)) -> mark(inf(X)) [14] take(mark(X1),X2) -> mark(take(X1,X2)) [15] take(X1,mark(X2)) -> mark(take(X1,X2)) [16] length(mark(X)) -> mark(length(X)) [17] proper(eq(X1,X2)) -> eq(proper(X1),proper(X2)) [18] proper(0) -> ok(0) [19] proper(true) -> ok(true) [20] proper(s(X)) -> s(proper(X)) [21] proper(false) -> ok(false) [22] proper(inf(X)) -> inf(proper(X)) [23] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [24] proper(take(X1,X2)) -> take(proper(X1),proper(X2)) [25] proper(nil) -> ok(nil) [26] proper(length(X)) -> length(proper(X)) [27] eq(ok(X1),ok(X2)) -> ok(eq(X1,X2)) [28] s(ok(X)) -> ok(s(X)) [29] inf(ok(X)) -> ok(inf(X)) [30] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [31] take(ok(X1),ok(X2)) -> ok(take(X1,X2)) [32] length(ok(X)) -> ok(length(X)) [33] top(mark(X)) -> top(proper(X)) [34] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 9 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> } { --> } { --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(eq(0,0)) >= mark(true) ; active(eq(s(X),s(Y))) >= mark(eq(X,Y)) ; active(eq(X,Y)) >= mark(false) ; active(inf(X)) >= mark(cons(X,inf(s(X)))) ; active(inf(X)) >= inf(active(X)) ; active(take(0,X)) >= mark(nil) ; active(take(s(X),cons(Y,L))) >= mark(cons(Y,take(X,L))) ; active(take(X1,X2)) >= take(active(X1),X2) ; active(take(X1,X2)) >= take(X1,active(X2)) ; active(length(cons(X,L))) >= mark(s(length(L))) ; active(length(nil)) >= mark(0) ; active(length(X)) >= length(active(X)) ; eq(ok(X1),ok(X2)) >= ok(eq(X1,X2)) ; s(ok(X)) >= ok(s(X)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; inf(mark(X)) >= mark(inf(X)) ; inf(ok(X)) >= ok(inf(X)) ; take(mark(X1),X2) >= mark(take(X1,X2)) ; take(ok(X1),ok(X2)) >= ok(take(X1,X2)) ; take(X1,mark(X2)) >= mark(take(X1,X2)) ; length(mark(X)) >= mark(length(X)) ; length(ok(X)) >= ok(length(X)) ; proper(true) >= ok(true) ; proper(eq(X1,X2)) >= eq(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(s(X)) >= s(proper(X)) ; proper(false) >= ok(false) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(inf(X)) >= inf(proper(X)) ; proper(nil) >= ok(nil) ; proper(take(X1,X2)) >= take(proper(X1),proper(X2)) ; proper(length(X)) >= length(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(eq(0,0)) >= mark(true) constraint: active(eq(s(X),s(Y))) >= mark(eq(X,Y)) constraint: active(eq(X,Y)) >= mark(false) constraint: active(inf(X)) >= mark(cons(X,inf(s(X)))) constraint: active(inf(X)) >= inf(active(X)) constraint: active(take(0,X)) >= mark(nil) constraint: active(take(s(X),cons(Y,L))) >= mark(cons(Y,take(X,L))) constraint: active(take(X1,X2)) >= take(active(X1),X2) constraint: active(take(X1,X2)) >= take(X1,active(X2)) constraint: active(length(cons(X,L))) >= mark(s(length(L))) constraint: active(length(nil)) >= mark(0) constraint: active(length(X)) >= length(active(X)) constraint: eq(ok(X1),ok(X2)) >= ok(eq(X1,X2)) constraint: s(ok(X)) >= ok(s(X)) constraint: cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) constraint: inf(mark(X)) >= mark(inf(X)) constraint: inf(ok(X)) >= ok(inf(X)) constraint: take(mark(X1),X2) >= mark(take(X1,X2)) constraint: take(ok(X1),ok(X2)) >= ok(take(X1,X2)) constraint: take(X1,mark(X2)) >= mark(take(X1,X2)) constraint: length(mark(X)) >= mark(length(X)) constraint: length(ok(X)) >= ok(length(X)) constraint: proper(true) >= ok(true) constraint: proper(eq(X1,X2)) >= eq(proper(X1),proper(X2)) constraint: proper(0) >= ok(0) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(false) >= ok(false) constraint: proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) constraint: proper(inf(X)) >= inf(proper(X)) constraint: proper(nil) >= ok(nil) constraint: proper(take(X1,X2)) >= take(proper(X1),proper(X2)) constraint: proper(length(X)) >= length(proper(X)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(mark(X)) >= Marked_top(proper(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Subterm criterion) ST: Marked_proper -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_active -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_eq -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_cons -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_s -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_inf -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_take -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_length -> 1 APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(eq(0,0)) >= mark(true) ; active(eq(s(X),s(Y))) >= mark(eq(X,Y)) ; active(eq(X,Y)) >= mark(false) ; active(inf(X)) >= mark(cons(X,inf(s(X)))) ; active(inf(X)) >= inf(active(X)) ; active(take(0,X)) >= mark(nil) ; active(take(s(X),cons(Y,L))) >= mark(cons(Y,take(X,L))) ; active(take(X1,X2)) >= take(active(X1),X2) ; active(take(X1,X2)) >= take(X1,active(X2)) ; active(length(cons(X,L))) >= mark(s(length(L))) ; active(length(nil)) >= mark(0) ; active(length(X)) >= length(active(X)) ; eq(ok(X1),ok(X2)) >= ok(eq(X1,X2)) ; s(ok(X)) >= ok(s(X)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; inf(mark(X)) >= mark(inf(X)) ; inf(ok(X)) >= ok(inf(X)) ; take(mark(X1),X2) >= mark(take(X1,X2)) ; take(ok(X1),ok(X2)) >= ok(take(X1,X2)) ; take(X1,mark(X2)) >= mark(take(X1,X2)) ; length(mark(X)) >= mark(length(X)) ; length(ok(X)) >= ok(length(X)) ; proper(true) >= ok(true) ; proper(eq(X1,X2)) >= eq(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(s(X)) >= s(proper(X)) ; proper(false) >= ok(false) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(inf(X)) >= inf(proper(X)) ; proper(nil) >= ok(nil) ; proper(take(X1,X2)) >= take(proper(X1),proper(X2)) ; proper(length(X)) >= length(proper(X)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(eq(0,0)) >= mark(true) constraint: active(eq(s(X),s(Y))) >= mark(eq(X,Y)) constraint: active(eq(X,Y)) >= mark(false) constraint: active(inf(X)) >= mark(cons(X,inf(s(X)))) constraint: active(inf(X)) >= inf(active(X)) constraint: active(take(0,X)) >= mark(nil) constraint: active(take(s(X),cons(Y,L))) >= mark(cons(Y,take(X,L))) constraint: active(take(X1,X2)) >= take(active(X1),X2) constraint: active(take(X1,X2)) >= take(X1,active(X2)) constraint: active(length(cons(X,L))) >= mark(s(length(L))) constraint: active(length(nil)) >= mark(0) constraint: active(length(X)) >= length(active(X)) constraint: eq(ok(X1),ok(X2)) >= ok(eq(X1,X2)) constraint: s(ok(X)) >= ok(s(X)) constraint: cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) constraint: inf(mark(X)) >= mark(inf(X)) constraint: inf(ok(X)) >= ok(inf(X)) constraint: take(mark(X1),X2) >= mark(take(X1,X2)) constraint: take(ok(X1),ok(X2)) >= ok(take(X1,X2)) constraint: take(X1,mark(X2)) >= mark(take(X1,X2)) constraint: length(mark(X)) >= mark(length(X)) constraint: length(ok(X)) >= ok(length(X)) constraint: proper(true) >= ok(true) constraint: proper(eq(X1,X2)) >= eq(proper(X1),proper(X2)) constraint: proper(0) >= ok(0) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(false) >= ok(false) constraint: proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) constraint: proper(inf(X)) >= inf(proper(X)) constraint: proper(nil) >= ok(nil) constraint: proper(take(X1,X2)) >= take(proper(X1),proper(X2)) constraint: proper(length(X)) >= length(proper(X)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) ST: Marked_take -> 1 APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] active(eq(0,0)) -> mark(true) [2] active(eq(s(X),s(Y))) -> mark(eq(X,Y)) [3] active(eq(X,Y)) -> mark(false) [4] active(inf(X)) -> mark(cons(X,inf(s(X)))) [5] active(take(0,X)) -> mark(nil) [6] active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) [7] active(length(nil)) -> mark(0) [8] active(length(cons(X,L))) -> mark(s(length(L))) [9] active(inf(X)) -> inf(active(X)) [10] active(take(X1,X2)) -> take(active(X1),X2) [11] active(take(X1,X2)) -> take(X1,active(X2)) [12] active(length(X)) -> length(active(X)) [13] inf(mark(X)) -> mark(inf(X)) [14] take(mark(X1),X2) -> mark(take(X1,X2)) [15] take(X1,mark(X2)) -> mark(take(X1,X2)) [16] length(mark(X)) -> mark(length(X)) [17] proper(eq(X1,X2)) -> eq(proper(X1),proper(X2)) [18] proper(0) -> ok(0) [19] proper(true) -> ok(true) [20] proper(s(X)) -> s(proper(X)) [21] proper(false) -> ok(false) [22] proper(inf(X)) -> inf(proper(X)) [23] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [24] proper(take(X1,X2)) -> take(proper(X1),proper(X2)) [25] proper(nil) -> ok(nil) [26] proper(length(X)) -> length(proper(X)) [27] eq(ok(X1),ok(X2)) -> ok(eq(X1,X2)) [28] s(ok(X)) -> ok(s(X)) [29] inf(ok(X)) -> ok(inf(X)) [30] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [31] take(ok(X1),ok(X2)) -> ok(take(X1,X2)) [32] length(ok(X)) -> ok(length(X)) [33] top(mark(X)) -> top(proper(X)) [34] top(ok(X)) -> top(active(X)) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ mark ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ inf ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ 0 ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ proper ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ active ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 1 , 0 ] [ 0 , 1 , 1 ] ]; [ take ] (X0,X1) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ false ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ top ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ true ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ nil ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ s ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ ok ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ eq ] (X0,X1) = [ [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ length ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ cons ] (X0,X1) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_top ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ inf ] (X0) = 3 + 2*X0 + 0; [ 0 ] () = 0; [ proper ] (X0) = 3 + 2*X0 + 0; [ active ] (X0) = 2*X0 + 0; [ take ] (X0,X1) = 1*X0 + 0; [ false ] () = 0; [ top ] (X0) = 0; [ true ] () = 0; [ nil ] () = 0; [ s ] (X0) = 3 + 2*X0 + 0; [ ok ] (X0) = 3 + 2*X0 + 0; [ eq ] (X0,X1) = 3 + 2*X1 + 0; [ length ] (X0) = 3 + 2*X0 + 0; [ cons ] (X0,X1) = 3 + 2*X1 + 0; [ Marked_top ] (X0) = 2*X0 + 0; ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} Cime worked for 8.193352 seconds (real time) Cime Exit Status: 0