- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))), t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))), g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) [2] n(0,y) -> 0 [3] n(x,0) -> 0 [4] n(s(x),s(y)) -> s(n(x,y)) [5] m(0,y) -> y [6] m(x,0) -> x [7] m(s(x),s(y)) -> s(m(x,y)) [8] k(0,s(y)) -> 0 [9] k(s(x),s(y)) -> s(k(minus(x,y),s(y))) [10] t(x) -> p(x,x) [11] p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) [12] p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) [13] p(0,y) -> y [14] p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) [15] minus(x,0) -> x [16] minus(s(x),s(y)) -> minus(x,y) [17] id(x) -> x [18] if(true,x,y) -> x [19] if(false,x,y) -> y [20] not(x) -> if(x,false,true) [21] and(x,false) -> false [22] and(true,true) -> true [23] f(0) -> true [24] f(s(x)) -> h(x) [25] h(0) -> false [26] h(s(x)) -> f(x) [27] gt(s(x),0) -> true [28] gt(0,y) -> false [29] gt(s(x),s(y)) -> gt(x,y) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> } { --> } { --> } { --> } { --> --> --> --> --> --> --> --> --> } { --> } { --> --> } { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { if(true,x,y) >= x ; if(false,x,y) >= y ; and(true,true) >= true ; and(x,false) >= false ; f(s(x)) >= h(x) ; f(0) >= true ; t(x) >= p(x,x) ; g(s(x),s(y)) >= if(and(f(s(x)),f(s(y))), t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))), g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) ; k(s(x),s(y)) >= s(k(minus(x,y),s(y))) ; k(0,s(y)) >= 0 ; minus(s(x),s(y)) >= minus(x,y) ; minus(x,0) >= x ; m(s(x),s(y)) >= s(m(x,y)) ; m(0,y) >= y ; m(x,0) >= x ; n(s(x),s(y)) >= s(n(x,y)) ; n(0,y) >= 0 ; n(x,0) >= 0 ; p(s(x),s(y)) >= s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) ; p(s(x),x) >= p(if(gt(x,x),id(x),id(x)),s(x)) ; p(0,y) >= y ; p(id(x),s(y)) >= s(p(x,if(gt(s(y),y),y,s(y)))) ; gt(s(x),s(y)) >= gt(x,y) ; gt(s(x),0) >= true ; gt(0,y) >= false ; not(x) >= if(x,false,true) ; id(x) >= x ; h(s(x)) >= f(x) ; h(0) >= false ; Marked_g(s(x),s(y)) >= Marked_g(k(minus(m(x,y),n(x,y)),s(s(0))), k(n(s(x),s(y)),s(s(0)))) ; Marked_g(s(x),s(y)) >= Marked_g(minus(m(x,y),n(x,y)),n(s(x),s(y))) ; } + Disjunctions:{ { Marked_g(s(x),s(y)) > Marked_g(k(minus(m(x,y),n(x,y)),s(s(0))), k(n(s(x),s(y)),s(s(0)))) ; } { Marked_g(s(x),s(y)) > Marked_g(minus(m(x,y),n(x,y)),n(s(x),s(y))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { if(true,x,y) >= x ; if(false,x,y) >= y ; and(true,true) >= true ; and(x,false) >= false ; f(s(x)) >= h(x) ; f(0) >= true ; t(x) >= p(x,x) ; g(s(x),s(y)) >= if(and(f(s(x)),f(s(y))), t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))), g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) ; k(s(x),s(y)) >= s(k(minus(x,y),s(y))) ; k(0,s(y)) >= 0 ; minus(s(x),s(y)) >= minus(x,y) ; minus(x,0) >= x ; m(s(x),s(y)) >= s(m(x,y)) ; m(0,y) >= y ; m(x,0) >= x ; n(s(x),s(y)) >= s(n(x,y)) ; n(0,y) >= 0 ; n(x,0) >= 0 ; p(s(x),s(y)) >= s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) ; p(s(x),x) >= p(if(gt(x,x),id(x),id(x)),s(x)) ; p(0,y) >= y ; p(id(x),s(y)) >= s(p(x,if(gt(s(y),y),y,s(y)))) ; gt(s(x),s(y)) >= gt(x,y) ; gt(s(x),0) >= true ; gt(0,y) >= false ; not(x) >= if(x,false,true) ; id(x) >= x ; h(s(x)) >= f(x) ; h(0) >= false ; Marked_g(s(x),s(y)) > Marked_g(k(minus(m(x,y),n(x,y)),s(s(0))), k(n(s(x),s(y)),s(s(0)))) ; Marked_g(s(x),s(y)) > Marked_g(minus(m(x,y),n(x,y)),n(s(x),s(y))) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { if(true,x,y) >= x ; if(false,x,y) >= y ; and(true,true) >= true ; and(x,false) >= false ; f(s(x)) >= h(x) ; f(0) >= true ; t(x) >= p(x,x) ; g(s(x),s(y)) >= if(and(f(s(x)),f(s(y))), t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))), g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) ; k(s(x),s(y)) >= s(k(minus(x,y),s(y))) ; k(0,s(y)) >= 0 ; minus(s(x),s(y)) >= minus(x,y) ; minus(x,0) >= x ; m(s(x),s(y)) >= s(m(x,y)) ; m(0,y) >= y ; m(x,0) >= x ; n(s(x),s(y)) >= s(n(x,y)) ; n(0,y) >= 0 ; n(x,0) >= 0 ; p(s(x),s(y)) >= s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) ; p(s(x),x) >= p(if(gt(x,x),id(x),id(x)),s(x)) ; p(0,y) >= y ; p(id(x),s(y)) >= s(p(x,if(gt(s(y),y),y,s(y)))) ; gt(s(x),s(y)) >= gt(x,y) ; gt(s(x),0) >= true ; gt(0,y) >= false ; not(x) >= if(x,false,true) ; id(x) >= x ; h(s(x)) >= f(x) ; h(0) >= false ; Marked_g(s(x),s(y)) > Marked_g(k(minus(m(x,y),n(x,y)),s(s(0))), k(n(s(x),s(y)),s(s(0)))) ; Marked_g(s(x),s(y)) > Marked_g(minus(m(x,y),n(x,y)),n(s(x),s(y))) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 215.347432 seconds (real time) Cime Exit Status: 0