- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] eq(0,0) -> true [2] eq(0,s(y)) -> false [3] eq(s(x),0) -> false [4] eq(s(x),s(y)) -> eq(x,y) [5] lt(0,s(y)) -> true [6] lt(x,0) -> false [7] lt(s(x),s(y)) -> lt(x,y) [8] bin2s(nil) -> 0 [9] bin2s(cons(x,xs)) -> bin2ss(x,xs) [10] bin2ss(x,nil) -> x [11] bin2ss(x,cons(0,xs)) -> bin2ss(double(x),xs) [12] bin2ss(x,cons(1,xs)) -> bin2ss(s(double(x)),xs) [13] half(0) -> 0 [14] half(s(0)) -> 0 [15] half(s(s(x))) -> s(half(x)) [16] log(0) -> 0 [17] log(s(0)) -> 0 [18] log(s(s(x))) -> s(log(half(s(s(x))))) [19] more(nil) -> nil [20] more(cons(xs,ys)) -> cons(cons(0,xs),cons(cons(1,xs),cons(xs,ys))) [21] s2bin(x) -> s2bin1(x,0,cons(nil,nil)) [22] s2bin1(x,y,lists) -> if1(lt(y,log(x)),x,y,lists) [23] if1(true,x,y,lists) -> s2bin1(x,s(y),more(lists)) [24] if1(false,x,y,lists) -> s2bin2(x,lists) [25] s2bin2(x,nil) -> bug_list_not [26] s2bin2(x,cons(xs,ys)) -> if2(eq(x,bin2s(xs)),x,xs,ys) [27] if2(true,x,xs,ys) -> xs [28] if2(false,x,xs,ys) -> s2bin2(x,ys) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 7 components: { --> --> } { --> } { --> } { --> } { --> --> } { --> } { --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { eq(0,0) >= true ; eq(0,s(y)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; lt(0,s(y)) >= true ; lt(s(x),s(y)) >= lt(x,y) ; lt(x,0) >= false ; bin2s(nil) >= 0 ; bin2s(cons(x,xs)) >= bin2ss(x,xs) ; bin2ss(x,nil) >= x ; bin2ss(x,cons(0,xs)) >= bin2ss(double(x),xs) ; bin2ss(x,cons(1,xs)) >= bin2ss(s(double(x)),xs) ; half(0) >= 0 ; half(s(0)) >= 0 ; half(s(s(x))) >= s(half(x)) ; log(0) >= 0 ; log(s(0)) >= 0 ; log(s(s(x))) >= s(log(half(s(s(x))))) ; more(nil) >= nil ; more(cons(xs,ys)) >= cons(cons(0,xs),cons(cons(1,xs),cons(xs,ys))) ; s2bin1(x,y,lists) >= if1(lt(y,log(x)),x,y,lists) ; s2bin(x) >= s2bin1(x,0,cons(nil,nil)) ; if1(true,x,y,lists) >= s2bin1(x,s(y),more(lists)) ; if1(false,x,y,lists) >= s2bin2(x,lists) ; s2bin2(x,nil) >= bug_list_not ; s2bin2(x,cons(xs,ys)) >= if2(eq(x,bin2s(xs)),x,xs,ys) ; if2(true,x,xs,ys) >= xs ; if2(false,x,xs,ys) >= s2bin2(x,ys) ; Marked_if1(true,x,y,lists) >= Marked_s2bin1(x,s(y),more(lists)) ; Marked_s2bin1(x,y,lists) >= Marked_if1(lt(y,log(x)),x,y,lists) ; } + Disjunctions:{ { Marked_if1(true,x,y,lists) > Marked_s2bin1(x,s(y),more(lists)) ; } { Marked_s2bin1(x,y,lists) > Marked_if1(lt(y,log(x)),x,y,lists) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (Simple graph) Found the following constraints: { eq(0,0) >= true ; eq(0,s(y)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; lt(0,s(y)) >= true ; lt(s(x),s(y)) >= lt(x,y) ; lt(x,0) >= false ; bin2s(nil) >= 0 ; bin2s(cons(x,xs)) >= bin2ss(x,xs) ; bin2ss(x,nil) >= x ; bin2ss(x,cons(0,xs)) >= bin2ss(double(x),xs) ; bin2ss(x,cons(1,xs)) >= bin2ss(s(double(x)),xs) ; half(0) >= 0 ; half(s(0)) >= 0 ; half(s(s(x))) >= s(half(x)) ; log(0) >= 0 ; log(s(0)) >= 0 ; log(s(s(x))) >= s(log(half(s(s(x))))) ; more(nil) >= nil ; more(cons(xs,ys)) >= cons(cons(0,xs),cons(cons(1,xs),cons(xs,ys))) ; s2bin1(x,y,lists) >= if1(lt(y,log(x)),x,y,lists) ; s2bin(x) >= s2bin1(x,0,cons(nil,nil)) ; if1(true,x,y,lists) >= s2bin1(x,s(y),more(lists)) ; if1(false,x,y,lists) >= s2bin2(x,lists) ; s2bin2(x,nil) >= bug_list_not ; s2bin2(x,cons(xs,ys)) >= if2(eq(x,bin2s(xs)),x,xs,ys) ; if2(true,x,xs,ys) >= xs ; if2(false,x,xs,ys) >= s2bin2(x,ys) ; Marked_if1(true,x,y,lists) >= Marked_s2bin1(x,s(y),more(lists)) ; Marked_s2bin1(x,y,lists) > Marked_if1(lt(y,log(x)),x,y,lists) ; } APPLY CRITERIA (SOLVE_ORD) Trying to solve the following constraints: { eq(0,0) >= true ; eq(0,s(y)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; lt(0,s(y)) >= true ; lt(s(x),s(y)) >= lt(x,y) ; lt(x,0) >= false ; bin2s(nil) >= 0 ; bin2s(cons(x,xs)) >= bin2ss(x,xs) ; bin2ss(x,nil) >= x ; bin2ss(x,cons(0,xs)) >= bin2ss(double(x),xs) ; bin2ss(x,cons(1,xs)) >= bin2ss(s(double(x)),xs) ; half(0) >= 0 ; half(s(0)) >= 0 ; half(s(s(x))) >= s(half(x)) ; log(0) >= 0 ; log(s(0)) >= 0 ; log(s(s(x))) >= s(log(half(s(s(x))))) ; more(nil) >= nil ; more(cons(xs,ys)) >= cons(cons(0,xs),cons(cons(1,xs),cons(xs,ys))) ; s2bin1(x,y,lists) >= if1(lt(y,log(x)),x,y,lists) ; s2bin(x) >= s2bin1(x,0,cons(nil,nil)) ; if1(true,x,y,lists) >= s2bin1(x,s(y),more(lists)) ; if1(false,x,y,lists) >= s2bin2(x,lists) ; s2bin2(x,nil) >= bug_list_not ; s2bin2(x,cons(xs,ys)) >= if2(eq(x,bin2s(xs)),x,xs,ys) ; if2(true,x,xs,ys) >= xs ; if2(false,x,xs,ys) >= s2bin2(x,ys) ; Marked_if1(true,x,y,lists) >= Marked_s2bin1(x,s(y),more(lists)) ; Marked_s2bin1(x,y,lists) > Marked_if1(lt(y,log(x)),x,y,lists) ; } + Disjunctions:{ } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 57.908809 seconds (real time) Cime Exit Status: 0