- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] f(a) -> g(h(a)) [2] h(g(x)) -> g(h(f(x))) [3] k(x,h(x),a) -> h(x) [4] k(f(x),y,x) -> f(x) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { h(g(x)) >= g(h(f(x))) ; f(a) >= g(h(a)) ; k(f(x),y,x) >= f(x) ; k(x,h(x),a) >= h(x) ; Marked_h(g(x)) >= Marked_h(f(x)) ; } + Disjunctions:{ { Marked_h(g(x)) > Marked_h(f(x)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: h(g(x)) >= g(h(f(x))) constraint: f(a) >= g(h(a)) constraint: k(f(x),y,x) >= f(x) constraint: k(x,h(x),a) >= h(x) constraint: Marked_h(g(x)) >= Marked_h(f(x)) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] f(a) -> g(h(a)) [2] h(g(x)) -> g(h(f(x))) [3] k(x,h(x),a) -> h(x) [4] k(f(x),y,x) -> f(x) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ g ] (X0) = [ [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 1 , 1 , 1 ] [ 0 , 0 , 0 ] ]; [ k ] (X0,X1,X2) = [ [ 0 , 0 , 0 ] [ 1 , 1 , 1 ] [ 0 , 0 , 0 ] ]*X2 + [ [ 0 , 0 , 0 ] [ 1 , 1 , 1 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 0 , 1 , 0 ] [ 1 , 1 , 1 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 1 , 1 ] [ 1 , 1 , 1 ] [ 1 , 1 , 1 ] ]; [ a ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 1 , 1 ] ]; [ Marked_h ] (X0) = [ [ 1 , 1 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ h ] (X0) = [ [ 0 , 1 , 0 ] [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 1 , 1 ] [ 1 , 1 , 1 ] [ 0 , 0 , 0 ] ]; [ f ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 1 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 1 ] [ 0 , 0 , 1 ] ]; ]} ]} ]} Cime worked for 0.205780 seconds (real time) Cime Exit Status: 0