- : unit = () - : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] if(true,x,y) -> x [2] if(false,x,y) -> y [3] eq(0,0) -> true [4] eq(0,s(x)) -> false [5] eq(s(x),0) -> false [6] eq(s(x),s(y)) -> eq(x,y) [7] app(nil,l) -> l [8] app(cons(x,l1),l2) -> cons(x,app(l1,l2)) [9] app(app(l1,l2),l3) -> app(l1,app(l2,l3)) [10] mem(x,nil) -> false [11] mem(x,cons(y,l)) -> ifmem(eq(x,y),x,l) [12] ifmem(true,x,l) -> true [13] ifmem(false,x,l) -> mem(x,l) [14] inter(x,nil) -> nil [15] inter(nil,x) -> nil [16] inter(app(l1,l2),l3) -> app(inter(l1,l3),inter(l2,l3)) [17] inter(l1,app(l2,l3)) -> app(inter(l1,l2),inter(l1,l3)) [18] inter(cons(x,l1),l2) -> ifinter(mem(x,l2),x,l1,l2) [19] inter(l1,cons(x,l2)) -> ifinter(mem(x,l1),x,l2,l1) [20] ifinter(true,x,l1,l2) -> cons(x,inter(l1,l2)) [21] ifinter(false,x,l1,l2) -> inter(l1,l2) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 4 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> } { --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { if(true,x,y) >= x ; if(false,x,y) >= y ; eq(0,0) >= true ; eq(0,s(x)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; app(app(l1,l2),l3) >= app(l1,app(l2,l3)) ; app(nil,l) >= l ; app(cons(x,l1),l2) >= cons(x,app(l1,l2)) ; mem(x,nil) >= false ; mem(x,cons(y,l)) >= ifmem(eq(x,y),x,l) ; ifmem(true,x,l) >= true ; ifmem(false,x,l) >= mem(x,l) ; inter(app(l1,l2),l3) >= app(inter(l1,l3),inter(l2,l3)) ; inter(nil,x) >= nil ; inter(cons(x,l1),l2) >= ifinter(mem(x,l2),x,l1,l2) ; inter(l1,app(l2,l3)) >= app(inter(l1,l2),inter(l1,l3)) ; inter(l1,cons(x,l2)) >= ifinter(mem(x,l1),x,l2,l1) ; inter(x,nil) >= nil ; ifinter(true,x,l1,l2) >= cons(x,inter(l1,l2)) ; ifinter(false,x,l1,l2) >= inter(l1,l2) ; Marked_ifinter(true,x,l1,l2) >= Marked_inter(l1,l2) ; Marked_ifinter(false,x,l1,l2) >= Marked_inter(l1,l2) ; Marked_inter(app(l1,l2),l3) >= Marked_inter(l2,l3) ; Marked_inter(app(l1,l2),l3) >= Marked_inter(l1,l3) ; Marked_inter(cons(x,l1),l2) >= Marked_ifinter(mem(x,l2),x,l1,l2) ; Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l3) ; Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l2) ; Marked_inter(l1,cons(x,l2)) >= Marked_ifinter(mem(x,l1),x,l2,l1) ; } + Disjunctions:{ { Marked_ifinter(true,x,l1,l2) > Marked_inter(l1,l2) ; } { Marked_ifinter(false,x,l1,l2) > Marked_inter(l1,l2) ; } { Marked_inter(app(l1,l2),l3) > Marked_inter(l2,l3) ; } { Marked_inter(app(l1,l2),l3) > Marked_inter(l1,l3) ; } { Marked_inter(cons(x,l1),l2) > Marked_ifinter(mem(x,l2),x,l1,l2) ; } { Marked_inter(l1,app(l2,l3)) > Marked_inter(l1,l3) ; } { Marked_inter(l1,app(l2,l3)) > Marked_inter(l1,l2) ; } { Marked_inter(l1,cons(x,l2)) > Marked_ifinter(mem(x,l1),x,l2,l1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: if(true,x,y) >= x constraint: if(false,x,y) >= y constraint: eq(0,0) >= true constraint: eq(0,s(x)) >= false constraint: eq(s(x),0) >= false constraint: eq(s(x),s(y)) >= eq(x,y) constraint: app(app(l1,l2),l3) >= app(l1,app(l2,l3)) constraint: app(nil,l) >= l constraint: app(cons(x,l1),l2) >= cons(x,app(l1,l2)) constraint: mem(x,nil) >= false constraint: mem(x,cons(y,l)) >= ifmem(eq(x,y),x,l) constraint: ifmem(true,x,l) >= true constraint: ifmem(false,x,l) >= mem(x,l) constraint: inter(app(l1,l2),l3) >= app(inter(l1,l3),inter(l2,l3)) constraint: inter(nil,x) >= nil constraint: inter(cons(x,l1),l2) >= ifinter(mem(x,l2),x,l1,l2) constraint: inter(l1,app(l2,l3)) >= app(inter(l1,l2),inter(l1,l3)) constraint: inter(l1,cons(x,l2)) >= ifinter(mem(x,l1),x,l2,l1) constraint: inter(x,nil) >= nil constraint: ifinter(true,x,l1,l2) >= cons(x,inter(l1,l2)) constraint: ifinter(false,x,l1,l2) >= inter(l1,l2) constraint: Marked_ifinter(true,x,l1,l2) >= Marked_inter(l1,l2) constraint: Marked_ifinter(false,x,l1,l2) >= Marked_inter(l1,l2) constraint: Marked_inter(app(l1,l2),l3) >= Marked_inter(l2,l3) constraint: Marked_inter(app(l1,l2),l3) >= Marked_inter(l1,l3) constraint: Marked_inter(cons(x,l1),l2) >= Marked_ifinter(mem(x,l2),x,l1,l2) constraint: Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l3) constraint: Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l2) constraint: Marked_inter(l1,cons(x,l2)) >= Marked_ifinter(mem(x,l1),x,l2,l1) APPLY CRITERIA (Subterm criterion) ST: Marked_app -> 1 APPLY CRITERIA (Subterm criterion) ST: Marked_ifmem -> 3 Marked_mem -> 2 APPLY CRITERIA (Subterm criterion) ST: Marked_eq -> 1 APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Subterm criterion) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { if(true,x,y) >= x ; if(false,x,y) >= y ; eq(0,0) >= true ; eq(0,s(x)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; app(app(l1,l2),l3) >= app(l1,app(l2,l3)) ; app(nil,l) >= l ; app(cons(x,l1),l2) >= cons(x,app(l1,l2)) ; mem(x,nil) >= false ; mem(x,cons(y,l)) >= ifmem(eq(x,y),x,l) ; ifmem(true,x,l) >= true ; ifmem(false,x,l) >= mem(x,l) ; inter(app(l1,l2),l3) >= app(inter(l1,l3),inter(l2,l3)) ; inter(nil,x) >= nil ; inter(cons(x,l1),l2) >= ifinter(mem(x,l2),x,l1,l2) ; inter(l1,app(l2,l3)) >= app(inter(l1,l2),inter(l1,l3)) ; inter(l1,cons(x,l2)) >= ifinter(mem(x,l1),x,l2,l1) ; inter(x,nil) >= nil ; ifinter(true,x,l1,l2) >= cons(x,inter(l1,l2)) ; ifinter(false,x,l1,l2) >= inter(l1,l2) ; Marked_ifinter(true,x,l1,l2) >= Marked_inter(l1,l2) ; Marked_inter(app(l1,l2),l3) >= Marked_inter(l2,l3) ; Marked_inter(app(l1,l2),l3) >= Marked_inter(l1,l3) ; Marked_inter(cons(x,l1),l2) >= Marked_ifinter(mem(x,l2),x,l1,l2) ; Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l3) ; Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l2) ; Marked_inter(l1,cons(x,l2)) >= Marked_ifinter(mem(x,l1),x,l2,l1) ; } + Disjunctions:{ { Marked_ifinter(true,x,l1,l2) > Marked_inter(l1,l2) ; } { Marked_inter(app(l1,l2),l3) > Marked_inter(l2,l3) ; } { Marked_inter(app(l1,l2),l3) > Marked_inter(l1,l3) ; } { Marked_inter(cons(x,l1),l2) > Marked_ifinter(mem(x,l2),x,l1,l2) ; } { Marked_inter(l1,app(l2,l3)) > Marked_inter(l1,l3) ; } { Marked_inter(l1,app(l2,l3)) > Marked_inter(l1,l2) ; } { Marked_inter(l1,cons(x,l2)) > Marked_ifinter(mem(x,l1),x,l2,l1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: if(true,x,y) >= x constraint: if(false,x,y) >= y constraint: eq(0,0) >= true constraint: eq(0,s(x)) >= false constraint: eq(s(x),0) >= false constraint: eq(s(x),s(y)) >= eq(x,y) constraint: app(app(l1,l2),l3) >= app(l1,app(l2,l3)) constraint: app(nil,l) >= l constraint: app(cons(x,l1),l2) >= cons(x,app(l1,l2)) constraint: mem(x,nil) >= false constraint: mem(x,cons(y,l)) >= ifmem(eq(x,y),x,l) constraint: ifmem(true,x,l) >= true constraint: ifmem(false,x,l) >= mem(x,l) constraint: inter(app(l1,l2),l3) >= app(inter(l1,l3),inter(l2,l3)) constraint: inter(nil,x) >= nil constraint: inter(cons(x,l1),l2) >= ifinter(mem(x,l2),x,l1,l2) constraint: inter(l1,app(l2,l3)) >= app(inter(l1,l2),inter(l1,l3)) constraint: inter(l1,cons(x,l2)) >= ifinter(mem(x,l1),x,l2,l1) constraint: inter(x,nil) >= nil constraint: ifinter(true,x,l1,l2) >= cons(x,inter(l1,l2)) constraint: ifinter(false,x,l1,l2) >= inter(l1,l2) constraint: Marked_ifinter(true,x,l1,l2) >= Marked_inter(l1,l2) constraint: Marked_inter(app(l1,l2),l3) >= Marked_inter(l2,l3) constraint: Marked_inter(app(l1,l2),l3) >= Marked_inter(l1,l3) constraint: Marked_inter(cons(x,l1),l2) >= Marked_ifinter(mem(x,l2),x,l1,l2) constraint: Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l3) constraint: Marked_inter(l1,app(l2,l3)) >= Marked_inter(l1,l2) constraint: Marked_inter(l1,cons(x,l2)) >= Marked_ifinter(mem(x,l1),x,l2,l1) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] if(true,x,y) -> x [2] if(false,x,y) -> y [3] eq(0,0) -> true [4] eq(0,s(x)) -> false [5] eq(s(x),0) -> false [6] eq(s(x),s(y)) -> eq(x,y) [7] app(nil,l) -> l [8] app(cons(x,l1),l2) -> cons(x,app(l1,l2)) [9] app(app(l1,l2),l3) -> app(l1,app(l2,l3)) [10] mem(x,nil) -> false [11] mem(x,cons(y,l)) -> ifmem(eq(x,y),x,l) [12] ifmem(true,x,l) -> true [13] ifmem(false,x,l) -> mem(x,l) [14] inter(x,nil) -> nil [15] inter(nil,x) -> nil [16] inter(app(l1,l2),l3) -> app(inter(l1,l3),inter(l2,l3)) [17] inter(l1,app(l2,l3)) -> app(inter(l1,l2),inter(l1,l3)) [18] inter(cons(x,l1),l2) -> ifinter(mem(x,l2),x,l1,l2) [19] inter(l1,cons(x,l2)) -> ifinter(mem(x,l1),x,l2,l1) [20] ifinter(true,x,l1,l2) -> cons(x,inter(l1,l2)) [21] ifinter(false,x,l1,l2) -> inter(l1,l2) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ if ] (X0,X1,X2) = 2*X2*X1*X0 + 2*X2*X1 + 2*X2*X0 + 2*X1*X0 + 1*X1 + 2*X0 + 2; [ cons ] (X0,X1) = 1*X1 + 2; [ 0 ] () = 0; [ ifinter ] (X0,X1,X2,X3) = 2*X3*X2 + 2*X3 + 2*X2 + 2; [ false ] () = 2; [ ifmem ] (X0,X1,X2) = 2*X2; [ app ] (X0,X1) = 1*X1 + 1*X0 + 2; [ Marked_inter ] (X0,X1) = 2*X1*X0; [ true ] () = 0; [ mem ] (X0,X1) = 2*X1; [ s ] (X0) = 1*X0 + 2; [ Marked_ifinter ] (X0,X1,X2,X3) = 2*X3*X2 + 2*X0; [ eq ] (X0,X1) = 1*X1 + 2*X0; [ inter ] (X0,X1) = 2*X1*X0 + 2*X1 + 2*X0; [ nil ] () = 1; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ if ] (X0,X1,X2) = 2 + 2*X0 + 2*X1 + 1*X1*X0 + 1*X2 + 2*X2*X1 + 2*X2*X1*X0 + 0; [ cons ] (X0,X1) = 2 + 1*X1 + 0; [ 0 ] () = 0; [ ifinter ] (X0,X1,X2,X3) = 2 + 1*X2 + 2*X3 + 1*X3*X2 + 0; [ false ] () = 0; [ ifmem ] (X0,X1,X2) = 2*X2 + 0; [ app ] (X0,X1) = 2 + 1*X0 + 1*X1 + 0; [ Marked_inter ] (X0,X1) = 2*X0 + 2*X1 + 2*X1*X0 + 0; [ true ] () = 0; [ mem ] (X0,X1) = 2*X1 + 0; [ s ] (X0) = 0; [ Marked_ifinter ] (X0,X1,X2,X3) = 2 + 1*X0 + 2*X2 + 2*X3 + 2*X3*X2 + 0; [ eq ] (X0,X1) = 0; [ inter ] (X0,X1) = 1*X0 + 2*X1 + 1*X1*X0 + 0; [ nil ] () = 0; ]} ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ST [ { DP termination of: , CRITERION: SG [ ]} ]} ]} ]} Cime worked for 32.319549 seconds (real time) Cime Exit Status: 0