- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] and(true,y) -> y [2] and(false,y) -> false [3] eq(nil,nil) -> true [4] eq(cons(t,l),nil) -> false [5] eq(nil,cons(t,l)) -> false [6] eq(cons(t,l),cons(t',l')) -> and(eq(t,t'),eq(l,l')) [7] eq(var(l),var(l')) -> eq(l,l') [8] eq(var(l),apply(t,s)) -> false [9] eq(var(l),lambda(x,t)) -> false [10] eq(apply(t,s),var(l)) -> false [11] eq(apply(t,s),apply(t',s')) -> and(eq(t,t'),eq(s,s')) [12] eq(apply(t,s),lambda(x,t)) -> false [13] eq(lambda(x,t),var(l)) -> false [14] eq(lambda(x,t),apply(t,s)) -> false [15] eq(lambda(x,t),lambda(x',t')) -> and(eq(x,x'),eq(t,t')) [16] if(true,var(k),var(l')) -> var(k) [17] if(false,var(k),var(l')) -> var(l') [18] ren(var(l),var(k),var(l')) -> if(eq(l,l'),var(k),var(l')) [19] ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) [20] ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil)))), ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil)))),t))) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { and(true,y) >= y ; and(false,y) >= false ; eq(nil,nil) >= true ; eq(nil,cons(t,l)) >= false ; eq(cons(t,l),nil) >= false ; eq(cons(t,l),cons(t',l')) >= and(eq(t,t'),eq(l,l')) ; eq(var(l),var(l')) >= eq(l,l') ; eq(var(l),apply(t,s)) >= false ; eq(var(l),lambda(x,t)) >= false ; eq(apply(t,s),var(l)) >= false ; eq(apply(t,s),apply(t',s')) >= and(eq(t,t'),eq(s,s')) ; eq(apply(t,s),lambda(x,t)) >= false ; eq(lambda(x,t),var(l)) >= false ; eq(lambda(x,t),apply(t,s)) >= false ; eq(lambda(x,t),lambda(x',t')) >= and(eq(x,x'),eq(t,t')) ; if(true,var(k),var(l')) >= var(k) ; if(false,var(k),var(l')) >= var(l') ; ren(var(l),var(k),var(l')) >= if(eq(l,l'),var(k),var(l')) ; ren(x,y,apply(t,s)) >= apply(ren(x,y,t),ren(x,y,s)) ; ren(x,y,lambda(z,t)) >= lambda(var(cons(x,cons(y,cons(lambda(z,t),nil)))), ren(x,y, ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil)))),t))) ; Marked_ren(x,y,apply(t,s)) >= Marked_ren(x,y,s) ; Marked_ren(x,y,apply(t,s)) >= Marked_ren(x,y,t) ; Marked_ren(x,y,lambda(z,t)) >= Marked_ren(x,y, ren(z, var(cons(x,cons(y,cons(lambda(z,t),nil)))), t)) ; Marked_ren(x,y,lambda(z,t)) >= Marked_ren(z, var(cons(x,cons(y,cons(lambda(z,t),nil)))), t) ; } + Disjunctions:{ { Marked_ren(x,y,apply(t,s)) > Marked_ren(x,y,s) ; } { Marked_ren(x,y,apply(t,s)) > Marked_ren(x,y,t) ; } { Marked_ren(x,y,lambda(z,t)) > Marked_ren(x,y, ren(z, var(cons(x,cons(y,cons(lambda(z,t),nil)))), t)) ; } { Marked_ren(x,y,lambda(z,t)) > Marked_ren(z, var(cons(x,cons(y,cons(lambda(z,t),nil)))), t) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: and(true,y) >= y constraint: and(false,y) >= false constraint: eq(nil,nil) >= true constraint: eq(nil,cons(t,l)) >= false constraint: eq(cons(t,l),nil) >= false constraint: eq(cons(t,l),cons(t',l')) >= and(eq(t,t'),eq(l,l')) constraint: eq(var(l),var(l')) >= eq(l,l') constraint: eq(var(l),apply(t,s)) >= false constraint: eq(var(l),lambda(x,t)) >= false constraint: eq(apply(t,s),var(l)) >= false constraint: eq(apply(t,s),apply(t',s')) >= and(eq(t,t'),eq(s,s')) constraint: eq(apply(t,s),lambda(x,t)) >= false constraint: eq(lambda(x,t),var(l)) >= false constraint: eq(lambda(x,t),apply(t,s)) >= false constraint: eq(lambda(x,t),lambda(x',t')) >= and(eq(x,x'),eq(t,t')) constraint: if(true,var(k),var(l')) >= var(k) constraint: if(false,var(k),var(l')) >= var(l') constraint: ren(var(l),var(k),var(l')) >= if(eq(l,l'),var(k),var(l')) constraint: ren(x,y,apply(t,s)) >= apply(ren(x,y,t),ren(x,y,s)) constraint: ren(x,y,lambda(z,t)) >= lambda(var(cons(x, cons(y,cons(lambda(z,t),nil)))), ren(x,y, ren(z, var(cons(x, cons(y,cons(lambda(z,t),nil)))), t))) constraint: Marked_ren(x,y,apply(t,s)) >= Marked_ren(x,y,s) constraint: Marked_ren(x,y,apply(t,s)) >= Marked_ren(x,y,t) constraint: Marked_ren(x,y,lambda(z,t)) >= Marked_ren(x,y, ren(z, var(cons(x, cons(y,cons(lambda(z,t),nil)))) ,t)) constraint: Marked_ren(x,y,lambda(z,t)) >= Marked_ren(z, var(cons(x, cons(y,cons(lambda(z,t),nil)))), t) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { and(true,y) >= y ; and(false,y) >= false ; eq(nil,nil) >= true ; eq(nil,cons(t,l)) >= false ; eq(cons(t,l),nil) >= false ; eq(cons(t,l),cons(t',l')) >= and(eq(t,t'),eq(l,l')) ; eq(var(l),var(l')) >= eq(l,l') ; eq(var(l),apply(t,s)) >= false ; eq(var(l),lambda(x,t)) >= false ; eq(apply(t,s),var(l)) >= false ; eq(apply(t,s),apply(t',s')) >= and(eq(t,t'),eq(s,s')) ; eq(apply(t,s),lambda(x,t)) >= false ; eq(lambda(x,t),var(l)) >= false ; eq(lambda(x,t),apply(t,s)) >= false ; eq(lambda(x,t),lambda(x',t')) >= and(eq(x,x'),eq(t,t')) ; if(true,var(k),var(l')) >= var(k) ; if(false,var(k),var(l')) >= var(l') ; ren(var(l),var(k),var(l')) >= if(eq(l,l'),var(k),var(l')) ; ren(x,y,apply(t,s)) >= apply(ren(x,y,t),ren(x,y,s)) ; ren(x,y,lambda(z,t)) >= lambda(var(cons(x,cons(y,cons(lambda(z,t),nil)))), ren(x,y, ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil)))),t))) ; Marked_eq(cons(t,l),cons(t',l')) >= Marked_eq(l,l') ; Marked_eq(cons(t,l),cons(t',l')) >= Marked_eq(t,t') ; Marked_eq(var(l),var(l')) >= Marked_eq(l,l') ; Marked_eq(apply(t,s),apply(t',s')) >= Marked_eq(s,s') ; Marked_eq(apply(t,s),apply(t',s')) >= Marked_eq(t,t') ; Marked_eq(lambda(x,t),lambda(x',t')) >= Marked_eq(t,t') ; Marked_eq(lambda(x,t),lambda(x',t')) >= Marked_eq(x,x') ; } + Disjunctions:{ { Marked_eq(cons(t,l),cons(t',l')) > Marked_eq(l,l') ; } { Marked_eq(cons(t,l),cons(t',l')) > Marked_eq(t,t') ; } { Marked_eq(var(l),var(l')) > Marked_eq(l,l') ; } { Marked_eq(apply(t,s),apply(t',s')) > Marked_eq(s,s') ; } { Marked_eq(apply(t,s),apply(t',s')) > Marked_eq(t,t') ; } { Marked_eq(lambda(x,t),lambda(x',t')) > Marked_eq(t,t') ; } { Marked_eq(lambda(x,t),lambda(x',t')) > Marked_eq(x,x') ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 67.241180 seconds (real time) Cime Exit Status: 0