- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] app(app(app(if,true),xs),ys) -> xs [2] app(app(app(if,false),xs),ys) -> ys [3] app(app(sub,x),0) -> x [4] app(app(sub,app(s,x)),app(s,y)) -> app(app(sub,x),y) [5] app(app(gtr,0),y) -> false [6] app(app(gtr,app(s,x)),0) -> true [7] app(app(gtr,app(s,x)),app(s,y)) -> app(app(gtr,x),y) [8] app(app(d,x),0) -> true [9] app(app(d,app(s,x)),app(s,y)) -> app(app(app(if,app(app(gtr,x),y)),false), app(app(d,app(s,x)),app(app(sub,y),x))) [10] app(len,nil) -> 0 [11] app(len,app(app(cons,x),xs)) -> app(s,app(len,xs)) [12] app(app(filter,p),nil) -> nil [13] app(app(filter,p),app(app(cons,x),xs)) -> app(app(app(if,app(p,x)),app(app(cons,x),app(app(filter,p),xs))), app(app(filter,p),xs)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { app(app(app(if,true),xs),ys) >= xs ; app(app(app(if,false),xs),ys) >= ys ; app(app(sub,app(s,x)),app(s,y)) >= app(app(sub,x),y) ; app(app(sub,x),0) >= x ; app(app(gtr,app(s,x)),app(s,y)) >= app(app(gtr,x),y) ; app(app(gtr,app(s,x)),0) >= true ; app(app(gtr,0),y) >= false ; app(app(d,app(s,x)),app(s,y)) >= app(app(app(if,app(app(gtr,x),y)),false), app(app(d,app(s,x)),app(app(sub,y),x))) ; app(app(d,x),0) >= true ; app(app(filter,p),app(app(cons,x),xs)) >= app(app(app(if,app(p,x)), app(app(cons,x), app(app(filter,p),xs))), app(app(filter,p),xs)) ; app(app(filter,p),nil) >= nil ; app(len,app(app(cons,x),xs)) >= app(s,app(len,xs)) ; app(len,nil) >= 0 ; Marked_app(app(sub,app(s,x)),app(s,y)) >= Marked_app(app(sub,x),y) ; Marked_app(app(gtr,app(s,x)),app(s,y)) >= Marked_app(app(gtr,x),y) ; Marked_app(app(d,app(s,x)),app(s,y)) >= Marked_app(app(app(if, app(app(gtr,x),y)), false), app(app(d,app(s,x)), app(app(sub,y),x))) ; Marked_app(app(d,app(s,x)),app(s,y)) >= Marked_app(app(sub,y),x) ; Marked_app(app(d,app(s,x)),app(s,y)) >= Marked_app(app(gtr,x),y) ; Marked_app(app(d,app(s,x)),app(s,y)) >= Marked_app(app(d,app(s,x)), app(app(sub,y),x)) ; Marked_app(app(filter,p),app(app(cons,x),xs)) >= Marked_app(app(app( if, app(p,x)), app(app(cons,x), app(app( filter, p), xs))), app(app(filter,p),xs)) ; Marked_app(app(filter,p),app(app(cons,x),xs)) >= Marked_app(app(if,app(p,x)), app(app(cons,x), app(app(filter,p),xs))) ; Marked_app(app(filter,p),app(app(cons,x),xs)) >= Marked_app(app(cons,x), app(app(filter,p),xs)) ; Marked_app(app(filter,p),app(app(cons,x),xs)) >= Marked_app(app(filter,p),xs) ; Marked_app(app(filter,p),app(app(cons,x),xs)) >= Marked_app(p,x) ; } + Disjunctions:{ { Marked_app(app(sub,app(s,x)),app(s,y)) > Marked_app(app(sub,x),y) ; } { Marked_app(app(gtr,app(s,x)),app(s,y)) > Marked_app(app(gtr,x),y) ; } { Marked_app(app(d,app(s,x)),app(s,y)) > Marked_app(app(app(if, app(app(gtr,x),y)), false), app(app(d,app(s,x)), app(app(sub,y),x))) ; } { Marked_app(app(d,app(s,x)),app(s,y)) > Marked_app(app(sub,y),x) ; } { Marked_app(app(d,app(s,x)),app(s,y)) > Marked_app(app(gtr,x),y) ; } { Marked_app(app(d,app(s,x)),app(s,y)) > Marked_app(app(d,app(s,x)), app(app(sub,y),x)) ; } { Marked_app(app(filter,p),app(app(cons,x),xs)) > Marked_app(app(app( if, app(p,x)), app(app(cons,x), app(app( filter, p), xs))), app(app(filter,p),xs)) ; } { Marked_app(app(filter,p),app(app(cons,x),xs)) > Marked_app(app(if,app(p,x)), app(app(cons,x), app(app(filter,p),xs))) ; } { Marked_app(app(filter,p),app(app(cons,x),xs)) > Marked_app(app(cons,x), app(app(filter,p),xs)) ; } { Marked_app(app(filter,p),app(app(cons,x),xs)) > Marked_app(app(filter,p),xs) ; } { Marked_app(app(filter,p),app(app(cons,x),xs)) > Marked_app(p,x) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 48.860321 seconds (real time) Cime Exit Status: 0