- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] U11(tt,N) -> activate(N) [2] U21(tt,M,N) -> s(plus(activate(N),activate(M))) [3] and(tt,X) -> activate(X) [4] isNat(n__0) -> tt [5] isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) [6] isNat(n__s(V1)) -> isNat(activate(V1)) [7] plus(N,0) -> U11(isNat(N),N) [8] plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) [9] 0 -> n__0 [10] plus(X1,X2) -> n__plus(X1,X2) [11] isNat(X) -> n__isNat(X) [12] s(X) -> n__s(X) [13] activate(n__0) -> 0 [14] activate(n__plus(X1,X2)) -> plus(X1,X2) [15] activate(n__isNat(X)) -> isNat(X) [16] activate(n__s(X)) -> s(X) [17] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { activate(n__0) >= 0 ; activate(n__isNat(X)) >= isNat(X) ; activate(n__plus(X1,X2)) >= plus(X1,X2) ; activate(n__s(X)) >= s(X) ; activate(X) >= X ; U11(tt,N) >= activate(N) ; s(X) >= n__s(X) ; plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) ; plus(N,0) >= U11(isNat(N),N) ; plus(X1,X2) >= n__plus(X1,X2) ; U21(tt,M,N) >= s(plus(activate(N),activate(M))) ; and(tt,X) >= activate(X) ; isNat(n__0) >= tt ; isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)),n__isNat(activate(V2))) ; isNat(n__s(V1)) >= isNat(activate(V1)) ; isNat(X) >= n__isNat(X) ; 0 >= n__0 ; Marked_activate(n__isNat(X)) >= Marked_isNat(X) ; Marked_activate(n__plus(X1,X2)) >= Marked_plus(X1,X2) ; Marked_isNat(n__plus(V1,V2)) >= Marked_activate(V1) ; Marked_isNat(n__plus(V1,V2)) >= Marked_activate(V2) ; Marked_isNat(n__plus(V1,V2)) >= Marked_isNat(activate(V1)) ; Marked_isNat(n__plus(V1,V2)) >= Marked_and(isNat(activate(V1)), n__isNat(activate(V2))) ; Marked_isNat(n__s(V1)) >= Marked_activate(V1) ; Marked_isNat(n__s(V1)) >= Marked_isNat(activate(V1)) ; Marked_plus(N,s(M)) >= Marked_isNat(M) ; Marked_plus(N,s(M)) >= Marked_U21(and(isNat(M),n__isNat(N)),M,N) ; Marked_plus(N,s(M)) >= Marked_and(isNat(M),n__isNat(N)) ; Marked_plus(N,0) >= Marked_isNat(N) ; Marked_plus(N,0) >= Marked_U11(isNat(N),N) ; Marked_U21(tt,M,N) >= Marked_activate(N) ; Marked_U21(tt,M,N) >= Marked_activate(M) ; Marked_U21(tt,M,N) >= Marked_plus(activate(N),activate(M)) ; Marked_and(tt,X) >= Marked_activate(X) ; Marked_U11(tt,N) >= Marked_activate(N) ; } + Disjunctions:{ { Marked_activate(n__isNat(X)) > Marked_isNat(X) ; } { Marked_activate(n__plus(X1,X2)) > Marked_plus(X1,X2) ; } { Marked_isNat(n__plus(V1,V2)) > Marked_activate(V1) ; } { Marked_isNat(n__plus(V1,V2)) > Marked_activate(V2) ; } { Marked_isNat(n__plus(V1,V2)) > Marked_isNat(activate(V1)) ; } { Marked_isNat(n__plus(V1,V2)) > Marked_and(isNat(activate(V1)), n__isNat(activate(V2))) ; } { Marked_isNat(n__s(V1)) > Marked_activate(V1) ; } { Marked_isNat(n__s(V1)) > Marked_isNat(activate(V1)) ; } { Marked_plus(N,s(M)) > Marked_isNat(M) ; } { Marked_plus(N,s(M)) > Marked_U21(and(isNat(M),n__isNat(N)),M,N) ; } { Marked_plus(N,s(M)) > Marked_and(isNat(M),n__isNat(N)) ; } { Marked_plus(N,0) > Marked_isNat(N) ; } { Marked_plus(N,0) > Marked_U11(isNat(N),N) ; } { Marked_U21(tt,M,N) > Marked_activate(N) ; } { Marked_U21(tt,M,N) > Marked_activate(M) ; } { Marked_U21(tt,M,N) > Marked_plus(activate(N),activate(M)) ; } { Marked_and(tt,X) > Marked_activate(X) ; } { Marked_U11(tt,N) > Marked_activate(N) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: activate(n__0) >= 0 constraint: activate(n__isNat(X)) >= isNat(X) constraint: activate(n__plus(X1,X2)) >= plus(X1,X2) constraint: activate(n__s(X)) >= s(X) constraint: activate(X) >= X constraint: U11(tt,N) >= activate(N) constraint: s(X) >= n__s(X) constraint: plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) constraint: plus(N,0) >= U11(isNat(N),N) constraint: plus(X1,X2) >= n__plus(X1,X2) constraint: U21(tt,M,N) >= s(plus(activate(N),activate(M))) constraint: and(tt,X) >= activate(X) constraint: isNat(n__0) >= tt constraint: isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)), n__isNat(activate(V2))) constraint: isNat(n__s(V1)) >= isNat(activate(V1)) constraint: isNat(X) >= n__isNat(X) constraint: 0 >= n__0 constraint: Marked_activate(n__isNat(X)) >= Marked_isNat(X) constraint: Marked_activate(n__plus(X1,X2)) >= Marked_plus(X1,X2) constraint: Marked_isNat(n__plus(V1,V2)) >= Marked_activate(V1) constraint: Marked_isNat(n__plus(V1,V2)) >= Marked_activate(V2) constraint: Marked_isNat(n__plus(V1,V2)) >= Marked_isNat(activate(V1)) constraint: Marked_isNat(n__plus(V1,V2)) >= Marked_and(isNat(activate(V1)), n__isNat(activate(V2))) constraint: Marked_isNat(n__s(V1)) >= Marked_activate(V1) constraint: Marked_isNat(n__s(V1)) >= Marked_isNat(activate(V1)) constraint: Marked_plus(N,s(M)) >= Marked_isNat(M) constraint: Marked_plus(N,s(M)) >= Marked_U21(and(isNat(M),n__isNat(N)),M,N) constraint: Marked_plus(N,s(M)) >= Marked_and(isNat(M),n__isNat(N)) constraint: Marked_plus(N,0) >= Marked_isNat(N) constraint: Marked_plus(N,0) >= Marked_U11(isNat(N),N) constraint: Marked_U21(tt,M,N) >= Marked_activate(N) constraint: Marked_U21(tt,M,N) >= Marked_activate(M) constraint: Marked_U21(tt,M,N) >= Marked_plus(activate(N),activate(M)) constraint: Marked_and(tt,X) >= Marked_activate(X) constraint: Marked_U11(tt,N) >= Marked_activate(N) APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> } { --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { activate(n__0) >= 0 ; activate(n__isNat(X)) >= isNat(X) ; activate(n__plus(X1,X2)) >= plus(X1,X2) ; activate(n__s(X)) >= s(X) ; activate(X) >= X ; U11(tt,N) >= activate(N) ; s(X) >= n__s(X) ; plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) ; plus(N,0) >= U11(isNat(N),N) ; plus(X1,X2) >= n__plus(X1,X2) ; U21(tt,M,N) >= s(plus(activate(N),activate(M))) ; and(tt,X) >= activate(X) ; isNat(n__0) >= tt ; isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)),n__isNat(activate(V2))) ; isNat(n__s(V1)) >= isNat(activate(V1)) ; isNat(X) >= n__isNat(X) ; 0 >= n__0 ; Marked_plus(N,s(M)) >= Marked_U21(and(isNat(M),n__isNat(N)),M,N) ; Marked_U21(tt,M,N) >= Marked_plus(activate(N),activate(M)) ; } + Disjunctions:{ { Marked_plus(N,s(M)) > Marked_U21(and(isNat(M),n__isNat(N)),M,N) ; } { Marked_U21(tt,M,N) > Marked_plus(activate(N),activate(M)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: activate(n__0) >= 0 constraint: activate(n__isNat(X)) >= isNat(X) constraint: activate(n__plus(X1,X2)) >= plus(X1,X2) constraint: activate(n__s(X)) >= s(X) constraint: activate(X) >= X constraint: U11(tt,N) >= activate(N) constraint: s(X) >= n__s(X) constraint: plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) constraint: plus(N,0) >= U11(isNat(N),N) constraint: plus(X1,X2) >= n__plus(X1,X2) constraint: U21(tt,M,N) >= s(plus(activate(N),activate(M))) constraint: and(tt,X) >= activate(X) constraint: isNat(n__0) >= tt constraint: isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)), n__isNat(activate(V2))) constraint: isNat(n__s(V1)) >= isNat(activate(V1)) constraint: isNat(X) >= n__isNat(X) constraint: 0 >= n__0 constraint: Marked_plus(N,s(M)) >= Marked_U21(and(isNat(M),n__isNat(N)),M,N) constraint: Marked_U21(tt,M,N) >= Marked_plus(activate(N),activate(M)) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { activate(n__0) >= 0 ; activate(n__isNat(X)) >= isNat(X) ; activate(n__plus(X1,X2)) >= plus(X1,X2) ; activate(n__s(X)) >= s(X) ; activate(X) >= X ; U11(tt,N) >= activate(N) ; s(X) >= n__s(X) ; plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) ; plus(N,0) >= U11(isNat(N),N) ; plus(X1,X2) >= n__plus(X1,X2) ; U21(tt,M,N) >= s(plus(activate(N),activate(M))) ; and(tt,X) >= activate(X) ; isNat(n__0) >= tt ; isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)),n__isNat(activate(V2))) ; isNat(n__s(V1)) >= isNat(activate(V1)) ; isNat(X) >= n__isNat(X) ; 0 >= n__0 ; Marked_activate(n__isNat(X)) >= Marked_isNat(X) ; Marked_isNat(n__s(V1)) >= Marked_activate(V1) ; Marked_isNat(n__s(V1)) >= Marked_isNat(activate(V1)) ; } + Disjunctions:{ { Marked_activate(n__isNat(X)) > Marked_isNat(X) ; } { Marked_isNat(n__s(V1)) > Marked_activate(V1) ; } { Marked_isNat(n__s(V1)) > Marked_isNat(activate(V1)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: activate(n__0) >= 0 constraint: activate(n__isNat(X)) >= isNat(X) constraint: activate(n__plus(X1,X2)) >= plus(X1,X2) constraint: activate(n__s(X)) >= s(X) constraint: activate(X) >= X constraint: U11(tt,N) >= activate(N) constraint: s(X) >= n__s(X) constraint: plus(N,s(M)) >= U21(and(isNat(M),n__isNat(N)),M,N) constraint: plus(N,0) >= U11(isNat(N),N) constraint: plus(X1,X2) >= n__plus(X1,X2) constraint: U21(tt,M,N) >= s(plus(activate(N),activate(M))) constraint: and(tt,X) >= activate(X) constraint: isNat(n__0) >= tt constraint: isNat(n__plus(V1,V2)) >= and(isNat(activate(V1)), n__isNat(activate(V2))) constraint: isNat(n__s(V1)) >= isNat(activate(V1)) constraint: isNat(X) >= n__isNat(X) constraint: 0 >= n__0 constraint: Marked_activate(n__isNat(X)) >= Marked_isNat(X) constraint: Marked_isNat(n__s(V1)) >= Marked_activate(V1) constraint: Marked_isNat(n__s(V1)) >= Marked_isNat(activate(V1)) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] U11(tt,N) -> activate(N) [2] U21(tt,M,N) -> s(plus(activate(N),activate(M))) [3] and(tt,X) -> activate(X) [4] isNat(n__0) -> tt [5] isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) [6] isNat(n__s(V1)) -> isNat(activate(V1)) [7] plus(N,0) -> U11(isNat(N),N) [8] plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) [9] 0 -> n__0 [10] plus(X1,X2) -> n__plus(X1,X2) [11] isNat(X) -> n__isNat(X) [12] s(X) -> n__s(X) [13] activate(n__0) -> 0 [14] activate(n__plus(X1,X2)) -> plus(X1,X2) [15] activate(n__isNat(X)) -> isNat(X) [16] activate(n__s(X)) -> s(X) [17] activate(X) -> X , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ activate ] (X0) = 1*X0; [ Marked_plus ] (X0,X1) = 2*X1 + 2*X0; [ n__0 ] () = 0; [ plus ] (X0,X1) = 2*X1 + 1*X0 + 1; [ Marked_U11 ] (X0,X1) = 2*X1; [ 0 ] () = 0; [ tt ] () = 0; [ Marked_U21 ] (X0,X1,X2) = 2*X2 + 2*X1; [ n__plus ] (X0,X1) = 2*X1 + 1*X0 + 1; [ and ] (X0,X1) = 2*X1 + 1; [ U11 ] (X0,X1) = 1*X1; [ n__isNat ] (X0) = 1*X0; [ U21 ] (X0,X1,X2) = 1*X2 + 2*X1 + 1; [ Marked_activate ] (X0) = 2*X0; [ s ] (X0) = 1*X0; [ Marked_and ] (X0,X1) = 2*X1; [ n__s ] (X0) = 1*X0; [ isNat ] (X0) = 1*X0; [ Marked_isNat ] (X0) = 2*X0; removing < Marked_isNat(n__plus(V1,V2)),Marked_activate(V2)> [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ activate ] (X0) = 1*X0; [ Marked_plus ] (X0,X1) = 1*X1; [ n__0 ] () = 0; [ plus ] (X0,X1) = 2*X1 + 1*X0; [ 0 ] () = 0; [ tt ] () = 0; [ Marked_U21 ] (X0,X1,X2) = 1*X1 + 1; [ n__plus ] (X0,X1) = 2*X1 + 1*X0; [ and ] (X0,X1) = 1*X1; [ U11 ] (X0,X1) = 1*X1; [ n__isNat ] (X0) = 0; [ U21 ] (X0,X1,X2) = 1*X2 + 2*X1 + 1; [ s ] (X0) = 1*X0 + 1; [ n__s ] (X0) = 1*X0 + 1; [ isNat ] (X0) = 0; removing [ { DP termination of: , CRITERION: SG [ ]} ]} { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ activate ] (X0) = 1*X0 + 0; [ n__0 ] () = 0; [ plus ] (X0,X1) = 1*X0 + 2*X1 + 0; [ 0 ] () = 0; [ tt ] () = 0; [ n__plus ] (X0,X1) = 1*X0 + 2*X1 + 0; [ and ] (X0,X1) = 1*X1 + 0; [ U11 ] (X0,X1) = 1*X1 + 0; [ n__isNat ] (X0) = 1 + 2*X0 + 0; [ U21 ] (X0,X1,X2) = 3 + 2*X1 + 1*X2 + 0; [ Marked_activate ] (X0) = 3 + 1*X0 + 0; [ s ] (X0) = 3 + 1*X0 + 0; [ n__s ] (X0) = 3 + 1*X0 + 0; [ isNat ] (X0) = 1 + 2*X0 + 0; [ Marked_isNat ] (X0) = 2 + 2*X0 + 0; ]} ]} ]} ]} ]} Cime worked for 0.310932 seconds (real time) Cime Exit Status: 0