- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(U11(tt,M,N)) -> mark(U12(tt,M,N)) [2] active(U12(tt,M,N)) -> mark(s(plus(N,M))) [3] active(U21(tt,M,N)) -> mark(U22(tt,M,N)) [4] active(U22(tt,M,N)) -> mark(plus(x(N,M),N)) [5] active(plus(N,0)) -> mark(N) [6] active(plus(N,s(M))) -> mark(U11(tt,M,N)) [7] active(x(N,0)) -> mark(0) [8] active(x(N,s(M))) -> mark(U21(tt,M,N)) [9] active(U11(X1,X2,X3)) -> U11(active(X1),X2,X3) [10] active(U12(X1,X2,X3)) -> U12(active(X1),X2,X3) [11] active(s(X)) -> s(active(X)) [12] active(plus(X1,X2)) -> plus(active(X1),X2) [13] active(plus(X1,X2)) -> plus(X1,active(X2)) [14] active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) [15] active(U22(X1,X2,X3)) -> U22(active(X1),X2,X3) [16] active(x(X1,X2)) -> x(active(X1),X2) [17] active(x(X1,X2)) -> x(X1,active(X2)) [18] U11(mark(X1),X2,X3) -> mark(U11(X1,X2,X3)) [19] U12(mark(X1),X2,X3) -> mark(U12(X1,X2,X3)) [20] s(mark(X)) -> mark(s(X)) [21] plus(mark(X1),X2) -> mark(plus(X1,X2)) [22] plus(X1,mark(X2)) -> mark(plus(X1,X2)) [23] U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) [24] U22(mark(X1),X2,X3) -> mark(U22(X1,X2,X3)) [25] x(mark(X1),X2) -> mark(x(X1,X2)) [26] x(X1,mark(X2)) -> mark(x(X1,X2)) [27] proper(U11(X1,X2,X3)) -> U11(proper(X1),proper(X2),proper(X3)) [28] proper(tt) -> ok(tt) [29] proper(U12(X1,X2,X3)) -> U12(proper(X1),proper(X2),proper(X3)) [30] proper(s(X)) -> s(proper(X)) [31] proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) [32] proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) [33] proper(U22(X1,X2,X3)) -> U22(proper(X1),proper(X2),proper(X3)) [34] proper(x(X1,X2)) -> x(proper(X1),proper(X2)) [35] proper(0) -> ok(0) [36] U11(ok(X1),ok(X2),ok(X3)) -> ok(U11(X1,X2,X3)) [37] U12(ok(X1),ok(X2),ok(X3)) -> ok(U12(X1,X2,X3)) [38] s(ok(X)) -> ok(s(X)) [39] plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) [40] U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) [41] U22(ok(X1),ok(X2),ok(X3)) -> ok(U22(X1,X2,X3)) [42] x(ok(X1),ok(X2)) -> ok(x(X1,X2)) [43] top(mark(X)) -> top(proper(X)) [44] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 10 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { U12(mark(X1),X2,X3) >= mark(U12(X1,X2,X3)) ; U12(ok(X1),ok(X2),ok(X3)) >= ok(U12(X1,X2,X3)) ; active(U12(tt,M,N)) >= mark(s(plus(N,M))) ; active(U12(X1,X2,X3)) >= U12(active(X1),X2,X3) ; active(U11(tt,M,N)) >= mark(U12(tt,M,N)) ; active(U11(X1,X2,X3)) >= U11(active(X1),X2,X3) ; active(s(X)) >= s(active(X)) ; active(plus(N,s(M))) >= mark(U11(tt,M,N)) ; active(plus(N,0)) >= mark(N) ; active(plus(X1,X2)) >= plus(active(X1),X2) ; active(plus(X1,X2)) >= plus(X1,active(X2)) ; active(U22(tt,M,N)) >= mark(plus(x(N,M),N)) ; active(U22(X1,X2,X3)) >= U22(active(X1),X2,X3) ; active(U21(tt,M,N)) >= mark(U22(tt,M,N)) ; active(U21(X1,X2,X3)) >= U21(active(X1),X2,X3) ; active(x(N,s(M))) >= mark(U21(tt,M,N)) ; active(x(N,0)) >= mark(0) ; active(x(X1,X2)) >= x(active(X1),X2) ; active(x(X1,X2)) >= x(X1,active(X2)) ; U11(mark(X1),X2,X3) >= mark(U11(X1,X2,X3)) ; U11(ok(X1),ok(X2),ok(X3)) >= ok(U11(X1,X2,X3)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; plus(mark(X1),X2) >= mark(plus(X1,X2)) ; plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) ; plus(X1,mark(X2)) >= mark(plus(X1,X2)) ; U22(mark(X1),X2,X3) >= mark(U22(X1,X2,X3)) ; U22(ok(X1),ok(X2),ok(X3)) >= ok(U22(X1,X2,X3)) ; U21(mark(X1),X2,X3) >= mark(U21(X1,X2,X3)) ; U21(ok(X1),ok(X2),ok(X3)) >= ok(U21(X1,X2,X3)) ; x(mark(X1),X2) >= mark(x(X1,X2)) ; x(ok(X1),ok(X2)) >= ok(x(X1,X2)) ; x(X1,mark(X2)) >= mark(x(X1,X2)) ; proper(U12(X1,X2,X3)) >= U12(proper(X1),proper(X2),proper(X3)) ; proper(tt) >= ok(tt) ; proper(U11(X1,X2,X3)) >= U11(proper(X1),proper(X2),proper(X3)) ; proper(s(X)) >= s(proper(X)) ; proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) ; proper(U22(X1,X2,X3)) >= U22(proper(X1),proper(X2),proper(X3)) ; proper(U21(X1,X2,X3)) >= U21(proper(X1),proper(X2),proper(X3)) ; proper(x(X1,X2)) >= x(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 48.865734 seconds (real time) Cime Exit Status: 0