- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(zeros) -> mark(cons(0,zeros)) [2] active(U11(tt,L)) -> mark(U12(tt,L)) [3] active(U12(tt,L)) -> mark(s(length(L))) [4] active(length(nil)) -> mark(0) [5] active(length(cons(N,L))) -> mark(U11(tt,L)) [6] active(cons(X1,X2)) -> cons(active(X1),X2) [7] active(U11(X1,X2)) -> U11(active(X1),X2) [8] active(U12(X1,X2)) -> U12(active(X1),X2) [9] active(s(X)) -> s(active(X)) [10] active(length(X)) -> length(active(X)) [11] cons(mark(X1),X2) -> mark(cons(X1,X2)) [12] U11(mark(X1),X2) -> mark(U11(X1,X2)) [13] U12(mark(X1),X2) -> mark(U12(X1,X2)) [14] s(mark(X)) -> mark(s(X)) [15] length(mark(X)) -> mark(length(X)) [16] proper(zeros) -> ok(zeros) [17] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [18] proper(0) -> ok(0) [19] proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) [20] proper(tt) -> ok(tt) [21] proper(U12(X1,X2)) -> U12(proper(X1),proper(X2)) [22] proper(s(X)) -> s(proper(X)) [23] proper(length(X)) -> length(proper(X)) [24] proper(nil) -> ok(nil) [25] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [26] U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) [27] U12(ok(X1),ok(X2)) -> ok(U12(X1,X2)) [28] s(ok(X)) -> ok(s(X)) [29] length(ok(X)) -> ok(length(X)) [30] top(mark(X)) -> top(proper(X)) [31] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(zeros) >= mark(cons(0,zeros)) ; active(U12(tt,L)) >= mark(s(length(L))) ; active(U12(X1,X2)) >= U12(active(X1),X2) ; active(U11(tt,L)) >= mark(U12(tt,L)) ; active(U11(X1,X2)) >= U11(active(X1),X2) ; active(s(X)) >= s(active(X)) ; active(length(cons(N,L))) >= mark(U11(tt,L)) ; active(length(nil)) >= mark(0) ; active(length(X)) >= length(active(X)) ; U12(mark(X1),X2) >= mark(U12(X1,X2)) ; U12(ok(X1),ok(X2)) >= ok(U12(X1,X2)) ; U11(mark(X1),X2) >= mark(U11(X1,X2)) ; U11(ok(X1),ok(X2)) >= ok(U11(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; length(mark(X)) >= mark(length(X)) ; length(ok(X)) >= ok(length(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(zeros) >= ok(zeros) ; proper(U12(X1,X2)) >= U12(proper(X1),proper(X2)) ; proper(tt) >= ok(tt) ; proper(U11(X1,X2)) >= U11(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(length(X)) >= length(proper(X)) ; proper(nil) >= ok(nil) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 51.699812 seconds (real time) Cime Exit Status: 0