- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] zeros -> cons(0,n__zeros) [2] U11(tt) -> tt [3] U21(tt) -> tt [4] U31(tt) -> tt [5] U41(tt,V2) -> U42(isNatIList(activate(V2))) [6] U42(tt) -> tt [7] U51(tt,V2) -> U52(isNatList(activate(V2))) [8] U52(tt) -> tt [9] U61(tt,L,N) -> U62(isNat(activate(N)),activate(L)) [10] U62(tt,L) -> s(length(activate(L))) [11] isNat(n__0) -> tt [12] isNat(n__length(V1)) -> U11(isNatList(activate(V1))) [13] isNat(n__s(V1)) -> U21(isNat(activate(V1))) [14] isNatIList(V) -> U31(isNatList(activate(V))) [15] isNatIList(n__zeros) -> tt [16] isNatIList(n__cons(V1,V2)) -> U41(isNat(activate(V1)),activate(V2)) [17] isNatList(n__nil) -> tt [18] isNatList(n__cons(V1,V2)) -> U51(isNat(activate(V1)),activate(V2)) [19] length(nil) -> 0 [20] length(cons(N,L)) -> U61(isNatList(activate(L)),activate(L),N) [21] zeros -> n__zeros [22] 0 -> n__0 [23] length(X) -> n__length(X) [24] s(X) -> n__s(X) [25] cons(X1,X2) -> n__cons(X1,X2) [26] nil -> n__nil [27] activate(n__zeros) -> zeros [28] activate(n__0) -> 0 [29] activate(n__length(X)) -> length(activate(X)) [30] activate(n__s(X)) -> s(activate(X)) [31] activate(n__cons(X1,X2)) -> cons(activate(X1),X2) [32] activate(n__nil) -> nil [33] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(X1,X2) >= n__cons(X1,X2) ; 0 >= n__0 ; zeros >= cons(0,n__zeros) ; zeros >= n__zeros ; U11(tt) >= tt ; U21(tt) >= tt ; U31(tt) >= tt ; U42(tt) >= tt ; isNatIList(n__zeros) >= tt ; isNatIList(n__cons(V1,V2)) >= U41(isNat(activate(V1)),activate(V2)) ; isNatIList(V) >= U31(isNatList(activate(V))) ; activate(n__zeros) >= zeros ; activate(n__0) >= 0 ; activate(n__length(X)) >= length(activate(X)) ; activate(n__s(X)) >= s(activate(X)) ; activate(n__cons(X1,X2)) >= cons(activate(X1),X2) ; activate(n__nil) >= nil ; activate(X) >= X ; U41(tt,V2) >= U42(isNatIList(activate(V2))) ; U52(tt) >= tt ; isNatList(n__cons(V1,V2)) >= U51(isNat(activate(V1)),activate(V2)) ; isNatList(n__nil) >= tt ; U51(tt,V2) >= U52(isNatList(activate(V2))) ; U62(tt,L) >= s(length(activate(L))) ; isNat(n__0) >= tt ; isNat(n__length(V1)) >= U11(isNatList(activate(V1))) ; isNat(n__s(V1)) >= U21(isNat(activate(V1))) ; U61(tt,L,N) >= U62(isNat(activate(N)),activate(L)) ; s(X) >= n__s(X) ; length(cons(N,L)) >= U61(isNatList(activate(L)),activate(L),N) ; length(nil) >= 0 ; length(X) >= n__length(X) ; nil >= n__nil ; Marked_isNatIList(n__cons(V1,V2)) >= Marked_U41(isNat(activate(V1)), activate(V2)) ; Marked_U41(tt,V2) >= Marked_isNatIList(activate(V2)) ; } + Disjunctions:{ { Marked_isNatIList(n__cons(V1,V2)) > Marked_U41(isNat(activate(V1)), activate(V2)) ; } { Marked_U41(tt,V2) > Marked_isNatIList(activate(V2)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 27.137073 seconds (real time) Cime Exit Status: 0