- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] fact(X) -> if(zero(X),n__s(n__0),n__prod(X,n__fact(n__p(X)))) [2] add(0,X) -> X [3] add(s(X),Y) -> s(add(X,Y)) [4] prod(0,X) -> 0 [5] prod(s(X),Y) -> add(Y,prod(X,Y)) [6] if(true,X,Y) -> activate(X) [7] if(false,X,Y) -> activate(Y) [8] zero(0) -> true [9] zero(s(X)) -> false [10] p(s(X)) -> X [11] s(X) -> n__s(X) [12] 0 -> n__0 [13] prod(X1,X2) -> n__prod(X1,X2) [14] fact(X) -> n__fact(X) [15] p(X) -> n__p(X) [16] activate(n__s(X)) -> s(activate(X)) [17] activate(n__0) -> 0 [18] activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2)) [19] activate(n__fact(X)) -> fact(activate(X)) [20] activate(n__p(X)) -> p(activate(X)) [21] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 3 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> } { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { if(true,X,Y) >= activate(X) ; if(false,X,Y) >= activate(Y) ; zero(0) >= true ; zero(s(X)) >= false ; fact(X) >= if(zero(X),n__s(n__0),n__prod(X,n__fact(n__p(X)))) ; fact(X) >= n__fact(X) ; add(0,X) >= X ; add(s(X),Y) >= s(add(X,Y)) ; 0 >= n__0 ; s(X) >= n__s(X) ; prod(0,X) >= 0 ; prod(s(X),Y) >= add(Y,prod(X,Y)) ; prod(X1,X2) >= n__prod(X1,X2) ; activate(n__s(X)) >= s(activate(X)) ; activate(n__0) >= 0 ; activate(n__prod(X1,X2)) >= prod(activate(X1),activate(X2)) ; activate(n__fact(X)) >= fact(activate(X)) ; activate(n__p(X)) >= p(activate(X)) ; activate(X) >= X ; p(s(X)) >= X ; p(X) >= n__p(X) ; Marked_activate(n__s(X)) >= Marked_activate(X) ; Marked_activate(n__prod(X1,X2)) >= Marked_activate(X1) ; Marked_activate(n__prod(X1,X2)) >= Marked_activate(X2) ; Marked_activate(n__fact(X)) >= Marked_activate(X) ; Marked_activate(n__fact(X)) >= Marked_fact(activate(X)) ; Marked_activate(n__p(X)) >= Marked_activate(X) ; Marked_fact(X) >= Marked_if(zero(X),n__s(n__0),n__prod(X,n__fact(n__p(X)))) ; Marked_if(true,X,Y) >= Marked_activate(X) ; Marked_if(false,X,Y) >= Marked_activate(Y) ; } + Disjunctions:{ { Marked_activate(n__s(X)) > Marked_activate(X) ; } { Marked_activate(n__prod(X1,X2)) > Marked_activate(X1) ; } { Marked_activate(n__prod(X1,X2)) > Marked_activate(X2) ; } { Marked_activate(n__fact(X)) > Marked_activate(X) ; } { Marked_activate(n__fact(X)) > Marked_fact(activate(X)) ; } { Marked_activate(n__p(X)) > Marked_activate(X) ; } { Marked_fact(X) > Marked_if(zero(X),n__s(n__0),n__prod(X,n__fact(n__p(X)))) ; } { Marked_if(true,X,Y) > Marked_activate(X) ; } { Marked_if(false,X,Y) > Marked_activate(Y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 14.437428 seconds (real time) Cime Exit Status: 0