- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a__from(X) -> cons(mark(X),from(s(X))) [2] a__head(cons(X,XS)) -> mark(X) [3] a__2nd(cons(X,XS)) -> a__head(mark(XS)) [4] a__take(0,XS) -> nil [5] a__take(s(N),cons(X,XS)) -> cons(mark(X),take(N,XS)) [6] a__sel(0,cons(X,XS)) -> mark(X) [7] a__sel(s(N),cons(X,XS)) -> a__sel(mark(N),mark(XS)) [8] mark(from(X)) -> a__from(mark(X)) [9] mark(head(X)) -> a__head(mark(X)) [10] mark(2nd(X)) -> a__2nd(mark(X)) [11] mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) [12] mark(sel(X1,X2)) -> a__sel(mark(X1),mark(X2)) [13] mark(cons(X1,X2)) -> cons(mark(X1),X2) [14] mark(s(X)) -> s(mark(X)) [15] mark(0) -> 0 [16] mark(nil) -> nil [17] a__from(X) -> from(X) [18] a__head(X) -> head(X) [19] a__2nd(X) -> 2nd(X) [20] a__take(X1,X2) -> take(X1,X2) [21] a__sel(X1,X2) -> sel(X1,X2) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { mark(cons(X1,X2)) >= cons(mark(X1),X2) ; mark(from(X)) >= a__from(mark(X)) ; mark(s(X)) >= s(mark(X)) ; mark(nil) >= nil ; mark(0) >= 0 ; mark(take(X1,X2)) >= a__take(mark(X1),mark(X2)) ; mark(head(X)) >= a__head(mark(X)) ; mark(2nd(X)) >= a__2nd(mark(X)) ; mark(sel(X1,X2)) >= a__sel(mark(X1),mark(X2)) ; a__from(X) >= cons(mark(X),from(s(X))) ; a__from(X) >= from(X) ; a__head(cons(X,XS)) >= mark(X) ; a__head(X) >= head(X) ; a__2nd(cons(X,XS)) >= a__head(mark(XS)) ; a__2nd(X) >= 2nd(X) ; a__take(s(N),cons(X,XS)) >= cons(mark(X),take(N,XS)) ; a__take(0,XS) >= nil ; a__take(X1,X2) >= take(X1,X2) ; a__sel(s(N),cons(X,XS)) >= a__sel(mark(N),mark(XS)) ; a__sel(0,cons(X,XS)) >= mark(X) ; a__sel(X1,X2) >= sel(X1,X2) ; Marked_a__sel(s(N),cons(X,XS)) >= Marked_a__sel(mark(N),mark(XS)) ; Marked_a__sel(s(N),cons(X,XS)) >= Marked_mark(XS) ; Marked_a__sel(s(N),cons(X,XS)) >= Marked_mark(N) ; Marked_a__sel(0,cons(X,XS)) >= Marked_mark(X) ; Marked_a__take(s(N),cons(X,XS)) >= Marked_mark(X) ; Marked_a__2nd(cons(X,XS)) >= Marked_a__head(mark(XS)) ; Marked_a__2nd(cons(X,XS)) >= Marked_mark(XS) ; Marked_a__head(cons(X,XS)) >= Marked_mark(X) ; Marked_a__from(X) >= Marked_mark(X) ; Marked_mark(cons(X1,X2)) >= Marked_mark(X1) ; Marked_mark(from(X)) >= Marked_a__from(mark(X)) ; Marked_mark(from(X)) >= Marked_mark(X) ; Marked_mark(s(X)) >= Marked_mark(X) ; Marked_mark(take(X1,X2)) >= Marked_a__take(mark(X1),mark(X2)) ; Marked_mark(take(X1,X2)) >= Marked_mark(X1) ; Marked_mark(take(X1,X2)) >= Marked_mark(X2) ; Marked_mark(head(X)) >= Marked_a__head(mark(X)) ; Marked_mark(head(X)) >= Marked_mark(X) ; Marked_mark(2nd(X)) >= Marked_a__2nd(mark(X)) ; Marked_mark(2nd(X)) >= Marked_mark(X) ; Marked_mark(sel(X1,X2)) >= Marked_a__sel(mark(X1),mark(X2)) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X1) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X2) ; } + Disjunctions:{ { Marked_a__sel(s(N),cons(X,XS)) > Marked_a__sel(mark(N),mark(XS)) ; } { Marked_a__sel(s(N),cons(X,XS)) > Marked_mark(XS) ; } { Marked_a__sel(s(N),cons(X,XS)) > Marked_mark(N) ; } { Marked_a__sel(0,cons(X,XS)) > Marked_mark(X) ; } { Marked_a__take(s(N),cons(X,XS)) > Marked_mark(X) ; } { Marked_a__2nd(cons(X,XS)) > Marked_a__head(mark(XS)) ; } { Marked_a__2nd(cons(X,XS)) > Marked_mark(XS) ; } { Marked_a__head(cons(X,XS)) > Marked_mark(X) ; } { Marked_a__from(X) > Marked_mark(X) ; } { Marked_mark(cons(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(from(X)) > Marked_a__from(mark(X)) ; } { Marked_mark(from(X)) > Marked_mark(X) ; } { Marked_mark(s(X)) > Marked_mark(X) ; } { Marked_mark(take(X1,X2)) > Marked_a__take(mark(X1),mark(X2)) ; } { Marked_mark(take(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(take(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(head(X)) > Marked_a__head(mark(X)) ; } { Marked_mark(head(X)) > Marked_mark(X) ; } { Marked_mark(2nd(X)) > Marked_a__2nd(mark(X)) ; } { Marked_mark(2nd(X)) > Marked_mark(X) ; } { Marked_mark(sel(X1,X2)) > Marked_a__sel(mark(X1),mark(X2)) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 118.512738 seconds (real time) Cime Exit Status: 0