- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(2nd(cons1(X,cons(Y,Z)))) -> mark(Y) [2] active(2nd(cons(X,X1))) -> mark(2nd(cons1(X,X1))) [3] active(from(X)) -> mark(cons(X,from(s(X)))) [4] mark(2nd(X)) -> active(2nd(mark(X))) [5] mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) [6] mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) [7] mark(from(X)) -> active(from(mark(X))) [8] mark(s(X)) -> active(s(mark(X))) [9] 2nd(mark(X)) -> 2nd(X) [10] 2nd(active(X)) -> 2nd(X) [11] cons1(mark(X1),X2) -> cons1(X1,X2) [12] cons1(X1,mark(X2)) -> cons1(X1,X2) [13] cons1(active(X1),X2) -> cons1(X1,X2) [14] cons1(X1,active(X2)) -> cons1(X1,X2) [15] cons(mark(X1),X2) -> cons(X1,X2) [16] cons(X1,mark(X2)) -> cons(X1,X2) [17] cons(active(X1),X2) -> cons(X1,X2) [18] cons(X1,active(X2)) -> cons(X1,X2) [19] from(mark(X)) -> from(X) [20] from(active(X)) -> from(X) [21] s(mark(X)) -> s(X) [22] s(active(X)) -> s(X) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 6 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { mark(2nd(X)) >= active(2nd(mark(X))) ; mark(cons1(X1,X2)) >= active(cons1(mark(X1),mark(X2))) ; mark(cons(X1,X2)) >= active(cons(mark(X1),X2)) ; mark(from(X)) >= active(from(mark(X))) ; mark(s(X)) >= active(s(mark(X))) ; active(2nd(cons1(X,cons(Y,Z)))) >= mark(Y) ; active(2nd(cons(X,X1))) >= mark(2nd(cons1(X,X1))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; 2nd(mark(X)) >= 2nd(X) ; 2nd(active(X)) >= 2nd(X) ; cons1(mark(X1),X2) >= cons1(X1,X2) ; cons1(active(X1),X2) >= cons1(X1,X2) ; cons1(X1,mark(X2)) >= cons1(X1,X2) ; cons1(X1,active(X2)) >= cons1(X1,X2) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; Marked_mark(2nd(X)) >= Marked_mark(X) ; Marked_mark(2nd(X)) >= Marked_active(2nd(mark(X))) ; Marked_mark(cons1(X1,X2)) >= Marked_mark(X1) ; Marked_mark(cons1(X1,X2)) >= Marked_mark(X2) ; Marked_mark(cons1(X1,X2)) >= Marked_active(cons1(mark(X1),mark(X2))) ; Marked_mark(cons(X1,X2)) >= Marked_mark(X1) ; Marked_mark(cons(X1,X2)) >= Marked_active(cons(mark(X1),X2)) ; Marked_mark(from(X)) >= Marked_mark(X) ; Marked_mark(from(X)) >= Marked_active(from(mark(X))) ; Marked_mark(s(X)) >= Marked_mark(X) ; Marked_mark(s(X)) >= Marked_active(s(mark(X))) ; Marked_active(2nd(cons1(X,cons(Y,Z)))) >= Marked_mark(Y) ; Marked_active(2nd(cons(X,X1))) >= Marked_mark(2nd(cons1(X,X1))) ; Marked_active(from(X)) >= Marked_mark(cons(X,from(s(X)))) ; } + Disjunctions:{ { Marked_mark(2nd(X)) > Marked_mark(X) ; } { Marked_mark(2nd(X)) > Marked_active(2nd(mark(X))) ; } { Marked_mark(cons1(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(cons1(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(cons1(X1,X2)) > Marked_active(cons1(mark(X1),mark(X2))) ; } { Marked_mark(cons(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(cons(X1,X2)) > Marked_active(cons(mark(X1),X2)) ; } { Marked_mark(from(X)) > Marked_mark(X) ; } { Marked_mark(from(X)) > Marked_active(from(mark(X))) ; } { Marked_mark(s(X)) > Marked_mark(X) ; } { Marked_mark(s(X)) > Marked_active(s(mark(X))) ; } { Marked_active(2nd(cons1(X,cons(Y,Z)))) > Marked_mark(Y) ; } { Marked_active(2nd(cons(X,X1))) > Marked_mark(2nd(cons1(X,X1))) ; } { Marked_active(from(X)) > Marked_mark(cons(X,from(s(X)))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: mark(2nd(X)) >= active(2nd(mark(X))) constraint: mark(cons1(X1,X2)) >= active(cons1(mark(X1),mark(X2))) constraint: mark(cons(X1,X2)) >= active(cons(mark(X1),X2)) constraint: mark(from(X)) >= active(from(mark(X))) constraint: mark(s(X)) >= active(s(mark(X))) constraint: active(2nd(cons1(X,cons(Y,Z)))) >= mark(Y) constraint: active(2nd(cons(X,X1))) >= mark(2nd(cons1(X,X1))) constraint: active(from(X)) >= mark(cons(X,from(s(X)))) constraint: 2nd(mark(X)) >= 2nd(X) constraint: 2nd(active(X)) >= 2nd(X) constraint: cons1(mark(X1),X2) >= cons1(X1,X2) constraint: cons1(active(X1),X2) >= cons1(X1,X2) constraint: cons1(X1,mark(X2)) >= cons1(X1,X2) constraint: cons1(X1,active(X2)) >= cons1(X1,X2) constraint: cons(mark(X1),X2) >= cons(X1,X2) constraint: cons(active(X1),X2) >= cons(X1,X2) constraint: cons(X1,mark(X2)) >= cons(X1,X2) constraint: cons(X1,active(X2)) >= cons(X1,X2) constraint: from(mark(X)) >= from(X) constraint: from(active(X)) >= from(X) constraint: s(mark(X)) >= s(X) constraint: s(active(X)) >= s(X) constraint: Marked_mark(2nd(X)) >= Marked_mark(X) constraint: Marked_mark(2nd(X)) >= Marked_active(2nd(mark(X))) constraint: Marked_mark(cons1(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(cons1(X1,X2)) >= Marked_mark(X2) constraint: Marked_mark(cons1(X1,X2)) >= Marked_active(cons1(mark(X1),mark(X2))) constraint: Marked_mark(cons(X1,X2)) >= Marked_mark(X1) constraint: Marked_mark(cons(X1,X2)) >= Marked_active(cons(mark(X1),X2)) constraint: Marked_mark(from(X)) >= Marked_mark(X) constraint: Marked_mark(from(X)) >= Marked_active(from(mark(X))) constraint: Marked_mark(s(X)) >= Marked_mark(X) constraint: Marked_mark(s(X)) >= Marked_active(s(mark(X))) constraint: Marked_active(2nd(cons1(X,cons(Y,Z)))) >= Marked_mark(Y) constraint: Marked_active(2nd(cons(X,X1))) >= Marked_mark(2nd(cons1(X,X1))) constraint: Marked_active(from(X)) >= Marked_mark(cons(X,from(s(X)))) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { mark(2nd(X)) >= active(2nd(mark(X))) ; mark(cons1(X1,X2)) >= active(cons1(mark(X1),mark(X2))) ; mark(cons(X1,X2)) >= active(cons(mark(X1),X2)) ; mark(from(X)) >= active(from(mark(X))) ; mark(s(X)) >= active(s(mark(X))) ; active(2nd(cons1(X,cons(Y,Z)))) >= mark(Y) ; active(2nd(cons(X,X1))) >= mark(2nd(cons1(X,X1))) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; 2nd(mark(X)) >= 2nd(X) ; 2nd(active(X)) >= 2nd(X) ; cons1(mark(X1),X2) >= cons1(X1,X2) ; cons1(active(X1),X2) >= cons1(X1,X2) ; cons1(X1,mark(X2)) >= cons1(X1,X2) ; cons1(X1,active(X2)) >= cons1(X1,X2) ; cons(mark(X1),X2) >= cons(X1,X2) ; cons(active(X1),X2) >= cons(X1,X2) ; cons(X1,mark(X2)) >= cons(X1,X2) ; cons(X1,active(X2)) >= cons(X1,X2) ; from(mark(X)) >= from(X) ; from(active(X)) >= from(X) ; s(mark(X)) >= s(X) ; s(active(X)) >= s(X) ; Marked_2nd(mark(X)) >= Marked_2nd(X) ; Marked_2nd(active(X)) >= Marked_2nd(X) ; } + Disjunctions:{ { Marked_2nd(mark(X)) > Marked_2nd(X) ; } { Marked_2nd(active(X)) > Marked_2nd(X) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 51.435386 seconds (real time) Cime Exit Status: 0