- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(f(X)) -> mark(cons(X,f(g(X)))) [2] active(g(0)) -> mark(s(0)) [3] active(g(s(X))) -> mark(s(s(g(X)))) [4] active(sel(0,cons(X,Y))) -> mark(X) [5] active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z)) [6] active(f(X)) -> f(active(X)) [7] active(cons(X1,X2)) -> cons(active(X1),X2) [8] active(g(X)) -> g(active(X)) [9] active(s(X)) -> s(active(X)) [10] active(sel(X1,X2)) -> sel(active(X1),X2) [11] active(sel(X1,X2)) -> sel(X1,active(X2)) [12] f(mark(X)) -> mark(f(X)) [13] cons(mark(X1),X2) -> mark(cons(X1,X2)) [14] g(mark(X)) -> mark(g(X)) [15] s(mark(X)) -> mark(s(X)) [16] sel(mark(X1),X2) -> mark(sel(X1,X2)) [17] sel(X1,mark(X2)) -> mark(sel(X1,X2)) [18] proper(f(X)) -> f(proper(X)) [19] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [20] proper(g(X)) -> g(proper(X)) [21] proper(0) -> ok(0) [22] proper(s(X)) -> s(proper(X)) [23] proper(sel(X1,X2)) -> sel(proper(X1),proper(X2)) [24] f(ok(X)) -> ok(f(X)) [25] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [26] g(ok(X)) -> ok(g(X)) [27] s(ok(X)) -> ok(s(X)) [28] sel(ok(X1),ok(X2)) -> ok(sel(X1,X2)) [29] top(mark(X)) -> top(proper(X)) [30] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; f(mark(X)) >= mark(f(X)) ; f(ok(X)) >= ok(f(X)) ; g(mark(X)) >= mark(g(X)) ; g(ok(X)) >= ok(g(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(f(X)) >= mark(cons(X,f(g(X)))) ; active(f(X)) >= f(active(X)) ; active(g(s(X))) >= mark(s(s(g(X)))) ; active(g(0)) >= mark(s(0)) ; active(g(X)) >= g(active(X)) ; active(s(X)) >= s(active(X)) ; active(sel(s(X),cons(Y,Z))) >= mark(sel(X,Z)) ; active(sel(0,cons(X,Y))) >= mark(X) ; active(sel(X1,X2)) >= sel(active(X1),X2) ; active(sel(X1,X2)) >= sel(X1,active(X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; sel(mark(X1),X2) >= mark(sel(X1,X2)) ; sel(ok(X1),ok(X2)) >= ok(sel(X1,X2)) ; sel(X1,mark(X2)) >= mark(sel(X1,X2)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(f(X)) >= f(proper(X)) ; proper(g(X)) >= g(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(0) >= ok(0) ; proper(sel(X1,X2)) >= sel(proper(X1),proper(X2)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 52.518361 seconds (real time) Cime Exit Status: 0