- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] minus(n__0,Y) -> 0 [2] minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y)) [3] geq(X,n__0) -> true [4] geq(n__0,n__s(Y)) -> false [5] geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y)) [6] div(0,n__s(Y)) -> 0 [7] div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))), n__0) [8] if(true,X,Y) -> activate(X) [9] if(false,X,Y) -> activate(Y) [10] 0 -> n__0 [11] s(X) -> n__s(X) [12] div(X1,X2) -> n__div(X1,X2) [13] minus(X1,X2) -> n__minus(X1,X2) [14] activate(n__0) -> 0 [15] activate(n__s(X)) -> s(activate(X)) [16] activate(n__div(X1,X2)) -> div(activate(X1),X2) [17] activate(n__minus(X1,X2)) -> minus(X1,X2) [18] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { 0 >= n__0 ; minus(n__0,Y) >= 0 ; minus(n__s(X),n__s(Y)) >= minus(activate(X),activate(Y)) ; minus(X1,X2) >= n__minus(X1,X2) ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(activate(X)) ; activate(n__div(X1,X2)) >= div(activate(X1),X2) ; activate(n__minus(X1,X2)) >= minus(X1,X2) ; activate(X) >= X ; geq(n__0,n__s(Y)) >= false ; geq(n__s(X),n__s(Y)) >= geq(activate(X),activate(Y)) ; geq(X,n__0) >= true ; div(0,n__s(Y)) >= 0 ; div(s(X),n__s(Y)) >= if(geq(X,activate(Y)), n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))), n__0) ; div(X1,X2) >= n__div(X1,X2) ; if(true,X,Y) >= activate(X) ; if(false,X,Y) >= activate(Y) ; s(X) >= n__s(X) ; Marked_activate(n__s(X)) >= Marked_activate(X) ; Marked_activate(n__div(X1,X2)) >= Marked_activate(X1) ; Marked_activate(n__div(X1,X2)) >= Marked_div(activate(X1),X2) ; Marked_activate(n__minus(X1,X2)) >= Marked_minus(X1,X2) ; Marked_minus(n__s(X),n__s(Y)) >= Marked_activate(Y) ; Marked_minus(n__s(X),n__s(Y)) >= Marked_activate(X) ; Marked_minus(n__s(X),n__s(Y)) >= Marked_minus(activate(X),activate(Y)) ; Marked_div(s(X),n__s(Y)) >= Marked_activate(Y) ; Marked_div(s(X),n__s(Y)) >= Marked_if(geq(X,activate(Y)), n__s(n__div(n__minus(X,activate(Y)), n__s(activate(Y)))),n__0) ; Marked_div(s(X),n__s(Y)) >= Marked_geq(X,activate(Y)) ; Marked_if(true,X,Y) >= Marked_activate(X) ; Marked_if(false,X,Y) >= Marked_activate(Y) ; Marked_geq(n__s(X),n__s(Y)) >= Marked_activate(Y) ; Marked_geq(n__s(X),n__s(Y)) >= Marked_activate(X) ; Marked_geq(n__s(X),n__s(Y)) >= Marked_geq(activate(X),activate(Y)) ; } + Disjunctions:{ { Marked_activate(n__s(X)) > Marked_activate(X) ; } { Marked_activate(n__div(X1,X2)) > Marked_activate(X1) ; } { Marked_activate(n__div(X1,X2)) > Marked_div(activate(X1),X2) ; } { Marked_activate(n__minus(X1,X2)) > Marked_minus(X1,X2) ; } { Marked_minus(n__s(X),n__s(Y)) > Marked_activate(Y) ; } { Marked_minus(n__s(X),n__s(Y)) > Marked_activate(X) ; } { Marked_minus(n__s(X),n__s(Y)) > Marked_minus(activate(X),activate(Y)) ; } { Marked_div(s(X),n__s(Y)) > Marked_activate(Y) ; } { Marked_div(s(X),n__s(Y)) > Marked_if(geq(X,activate(Y)), n__s(n__div(n__minus(X,activate(Y)), n__s(activate(Y)))),n__0) ; } { Marked_div(s(X),n__s(Y)) > Marked_geq(X,activate(Y)) ; } { Marked_if(true,X,Y) > Marked_activate(X) ; } { Marked_if(false,X,Y) > Marked_activate(Y) ; } { Marked_geq(n__s(X),n__s(Y)) > Marked_activate(Y) ; } { Marked_geq(n__s(X),n__s(Y)) > Marked_activate(X) ; } { Marked_geq(n__s(X),n__s(Y)) > Marked_geq(activate(X),activate(Y)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 103.100051 seconds (real time) Cime Exit Status: 0