- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(minus(0,Y)) -> mark(0) [2] active(minus(s(X),s(Y))) -> mark(minus(X,Y)) [3] active(geq(X,0)) -> mark(true) [4] active(geq(0,s(Y))) -> mark(false) [5] active(geq(s(X),s(Y))) -> mark(geq(X,Y)) [6] active(div(0,s(Y))) -> mark(0) [7] active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) [8] active(if(true,X,Y)) -> mark(X) [9] active(if(false,X,Y)) -> mark(Y) [10] active(s(X)) -> s(active(X)) [11] active(div(X1,X2)) -> div(active(X1),X2) [12] active(if(X1,X2,X3)) -> if(active(X1),X2,X3) [13] s(mark(X)) -> mark(s(X)) [14] div(mark(X1),X2) -> mark(div(X1,X2)) [15] if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) [16] proper(minus(X1,X2)) -> minus(proper(X1),proper(X2)) [17] proper(0) -> ok(0) [18] proper(s(X)) -> s(proper(X)) [19] proper(geq(X1,X2)) -> geq(proper(X1),proper(X2)) [20] proper(true) -> ok(true) [21] proper(false) -> ok(false) [22] proper(div(X1,X2)) -> div(proper(X1),proper(X2)) [23] proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) [24] minus(ok(X1),ok(X2)) -> ok(minus(X1,X2)) [25] s(ok(X)) -> ok(s(X)) [26] geq(ok(X1),ok(X2)) -> ok(geq(X1,X2)) [27] div(ok(X1),ok(X2)) -> ok(div(X1,X2)) [28] if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) [29] top(mark(X)) -> top(proper(X)) [30] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> } { --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(mark(X)) >= Marked_top(proper(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X1) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X2) ; Marked_proper(s(X)) >= Marked_proper(X) ; Marked_proper(geq(X1,X2)) >= Marked_proper(X1) ; Marked_proper(geq(X1,X2)) >= Marked_proper(X2) ; Marked_proper(div(X1,X2)) >= Marked_proper(X1) ; Marked_proper(div(X1,X2)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) ; } + Disjunctions:{ { Marked_proper(minus(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(minus(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(s(X)) > Marked_proper(X) ; } { Marked_proper(geq(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(geq(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(div(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(div(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X1) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(s(X)) >= Marked_proper(X) constraint: Marked_proper(geq(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(geq(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(div(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(div(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_active(s(X)) >= Marked_active(X) ; Marked_active(div(X1,X2)) >= Marked_active(X1) ; Marked_active(if(X1,X2,X3)) >= Marked_active(X1) ; } + Disjunctions:{ { Marked_active(s(X)) > Marked_active(X) ; } { Marked_active(div(X1,X2)) > Marked_active(X1) ; } { Marked_active(if(X1,X2,X3)) > Marked_active(X1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_active(s(X)) >= Marked_active(X) constraint: Marked_active(div(X1,X2)) >= Marked_active(X1) constraint: Marked_active(if(X1,X2,X3)) >= Marked_active(X1) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_geq(ok(X1),ok(X2)) >= Marked_geq(X1,X2) ; } + Disjunctions:{ { Marked_geq(ok(X1),ok(X2)) > Marked_geq(X1,X2) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_geq(ok(X1),ok(X2)) >= Marked_geq(X1,X2) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_minus(ok(X1),ok(X2)) >= Marked_minus(X1,X2) ; } + Disjunctions:{ { Marked_minus(ok(X1),ok(X2)) > Marked_minus(X1,X2) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_minus(ok(X1),ok(X2)) >= Marked_minus(X1,X2) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_s(mark(X)) >= Marked_s(X) ; Marked_s(ok(X)) >= Marked_s(X) ; } + Disjunctions:{ { Marked_s(mark(X)) > Marked_s(X) ; } { Marked_s(ok(X)) > Marked_s(X) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_s(mark(X)) >= Marked_s(X) constraint: Marked_s(ok(X)) >= Marked_s(X) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_div(mark(X1),X2) >= Marked_div(X1,X2) ; Marked_div(ok(X1),ok(X2)) >= Marked_div(X1,X2) ; } + Disjunctions:{ { Marked_div(mark(X1),X2) > Marked_div(X1,X2) ; } { Marked_div(ok(X1),ok(X2)) > Marked_div(X1,X2) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_div(mark(X1),X2) >= Marked_div(X1,X2) constraint: Marked_div(ok(X1),ok(X2)) >= Marked_div(X1,X2) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_if(mark(X1),X2,X3) >= Marked_if(X1,X2,X3) ; Marked_if(ok(X1),ok(X2),ok(X3)) >= Marked_if(X1,X2,X3) ; } + Disjunctions:{ { Marked_if(mark(X1),X2,X3) > Marked_if(X1,X2,X3) ; } { Marked_if(ok(X1),ok(X2),ok(X3)) > Marked_if(X1,X2,X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_if(mark(X1),X2,X3) >= Marked_if(X1,X2,X3) constraint: Marked_if(ok(X1),ok(X2),ok(X3)) >= Marked_if(X1,X2,X3) APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_top(ok(X)) >= Marked_top(active(X)) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X1) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X2) ; Marked_proper(s(X)) >= Marked_proper(X) ; Marked_proper(div(X1,X2)) >= Marked_proper(X1) ; Marked_proper(div(X1,X2)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) ; } + Disjunctions:{ { Marked_proper(minus(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(minus(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(s(X)) > Marked_proper(X) ; } { Marked_proper(div(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(div(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X1) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(s(X)) >= Marked_proper(X) constraint: Marked_proper(div(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(div(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X1) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X2) ; Marked_proper(s(X)) >= Marked_proper(X) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) ; } + Disjunctions:{ { Marked_proper(minus(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(minus(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(s(X)) > Marked_proper(X) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X1) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(s(X)) >= Marked_proper(X) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X1) ; Marked_proper(minus(X1,X2)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) ; } + Disjunctions:{ { Marked_proper(minus(X1,X2)) > Marked_proper(X1) ; } { Marked_proper(minus(X1,X2)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X1) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X1) constraint: Marked_proper(minus(X1,X2)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) ; Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) ; } + Disjunctions:{ { Marked_proper(if(X1,X2,X3)) > Marked_proper(X1) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X2) ; } { Marked_proper(if(X1,X2,X3)) > Marked_proper(X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X1) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X2) constraint: Marked_proper(if(X1,X2,X3)) >= Marked_proper(X3) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_active(s(X)) >= Marked_active(X) ; Marked_active(div(X1,X2)) >= Marked_active(X1) ; } + Disjunctions:{ { Marked_active(s(X)) > Marked_active(X) ; } { Marked_active(div(X1,X2)) > Marked_active(X1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_active(s(X)) >= Marked_active(X) constraint: Marked_active(div(X1,X2)) >= Marked_active(X1) APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_active(s(X)) >= Marked_active(X) ; } + Disjunctions:{ { Marked_active(s(X)) > Marked_active(X) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_active(s(X)) >= Marked_active(X) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_s(ok(X)) >= Marked_s(X) ; } + Disjunctions:{ { Marked_s(ok(X)) > Marked_s(X) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_s(ok(X)) >= Marked_s(X) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_div(ok(X1),ok(X2)) >= Marked_div(X1,X2) ; } + Disjunctions:{ { Marked_div(ok(X1),ok(X2)) > Marked_div(X1,X2) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_div(ok(X1),ok(X2)) >= Marked_div(X1,X2) APPLY CRITERIA (Graph splitting) Found 0 components: APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(minus(0,Y)) >= mark(0) ; active(minus(s(X),s(Y))) >= mark(minus(X,Y)) ; active(s(X)) >= s(active(X)) ; active(geq(0,s(Y))) >= mark(false) ; active(geq(s(X),s(Y))) >= mark(geq(X,Y)) ; active(geq(X,0)) >= mark(true) ; active(div(0,s(Y))) >= mark(0) ; active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) ; active(div(X1,X2)) >= div(active(X1),X2) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) ; div(mark(X1),X2) >= mark(div(X1,X2)) ; div(ok(X1),ok(X2)) >= ok(div(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; proper(0) >= ok(0) ; proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(div(X1,X2)) >= div(proper(X1),proper(X2)) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_if(ok(X1),ok(X2),ok(X3)) >= Marked_if(X1,X2,X3) ; } + Disjunctions:{ { Marked_if(ok(X1),ok(X2),ok(X3)) > Marked_if(X1,X2,X3) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: active(minus(0,Y)) >= mark(0) constraint: active(minus(s(X),s(Y))) >= mark(minus(X,Y)) constraint: active(s(X)) >= s(active(X)) constraint: active(geq(0,s(Y))) >= mark(false) constraint: active(geq(s(X),s(Y))) >= mark(geq(X,Y)) constraint: active(geq(X,0)) >= mark(true) constraint: active(div(0,s(Y))) >= mark(0) constraint: active(div(s(X),s(Y))) >= mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))), 0)) constraint: active(div(X1,X2)) >= div(active(X1),X2) constraint: active(if(true,X,Y)) >= mark(X) constraint: active(if(false,X,Y)) >= mark(Y) constraint: active(if(X1,X2,X3)) >= if(active(X1),X2,X3) constraint: minus(ok(X1),ok(X2)) >= ok(minus(X1,X2)) constraint: s(mark(X)) >= mark(s(X)) constraint: s(ok(X)) >= ok(s(X)) constraint: geq(ok(X1),ok(X2)) >= ok(geq(X1,X2)) constraint: div(mark(X1),X2) >= mark(div(X1,X2)) constraint: div(ok(X1),ok(X2)) >= ok(div(X1,X2)) constraint: if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) constraint: if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) constraint: proper(0) >= ok(0) constraint: proper(minus(X1,X2)) >= minus(proper(X1),proper(X2)) constraint: proper(s(X)) >= s(proper(X)) constraint: proper(true) >= ok(true) constraint: proper(geq(X1,X2)) >= geq(proper(X1),proper(X2)) constraint: proper(false) >= ok(false) constraint: proper(div(X1,X2)) >= div(proper(X1),proper(X2)) constraint: proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) constraint: top(mark(X)) >= top(proper(X)) constraint: top(ok(X)) >= top(active(X)) constraint: Marked_if(ok(X1),ok(X2),ok(X3)) >= Marked_if(X1,X2,X3) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] active(minus(0,Y)) -> mark(0) [2] active(minus(s(X),s(Y))) -> mark(minus(X,Y)) [3] active(geq(X,0)) -> mark(true) [4] active(geq(0,s(Y))) -> mark(false) [5] active(geq(s(X),s(Y))) -> mark(geq(X,Y)) [6] active(div(0,s(Y))) -> mark(0) [7] active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0)) [8] active(if(true,X,Y)) -> mark(X) [9] active(if(false,X,Y)) -> mark(Y) [10] active(s(X)) -> s(active(X)) [11] active(div(X1,X2)) -> div(active(X1),X2) [12] active(if(X1,X2,X3)) -> if(active(X1),X2,X3) [13] s(mark(X)) -> mark(s(X)) [14] div(mark(X1),X2) -> mark(div(X1,X2)) [15] if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) [16] proper(minus(X1,X2)) -> minus(proper(X1),proper(X2)) [17] proper(0) -> ok(0) [18] proper(s(X)) -> s(proper(X)) [19] proper(geq(X1,X2)) -> geq(proper(X1),proper(X2)) [20] proper(true) -> ok(true) [21] proper(false) -> ok(false) [22] proper(div(X1,X2)) -> div(proper(X1),proper(X2)) [23] proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) [24] minus(ok(X1),ok(X2)) -> ok(minus(X1,X2)) [25] s(ok(X)) -> ok(s(X)) [26] geq(ok(X1),ok(X2)) -> ok(geq(X1,X2)) [27] div(ok(X1),ok(X2)) -> ok(div(X1,X2)) [28] if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) [29] top(mark(X)) -> top(proper(X)) [30] top(ok(X)) -> top(active(X)) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 1*X0 + 1; [ div ] (X0,X1) = 2*X1*X0 + 1*X0 + 1; [ s ] (X0) = 1*X0 + 2; [ top ] (X0) = 0; [ active ] (X0) = 1*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 1*X1 + 2; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X2 + 1*X1 + 1*X0; [ true ] () = 1; [ Marked_top ] (X0) = 2*X0; [ minus ] (X0,X1) = 1*X0 + 1; [ ok ] (X0) = 1*X0; [ false ] () = 1; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 1*X0 + 0; [ s ] (X0) = 2*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 0; [ proper ] (X0) = 2*X0 + 0; [ geq ] (X0,X1) = 3 + 3*X0 + 2*X1 + 0; [ 0 ] () = 2 + 0; [ if ] (X0,X1,X2) = 2*X0 + 0; [ true ] () = 3 + 0; [ Marked_top ] (X0) = 2*X0 + 0; [ minus ] (X0,X1) = 2 + 0; [ ok ] (X0) = 1 + 0; [ false ] () = 1 + 0; ]} ]} ]} { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 2*X1 + 2*X0; [ s ] (X0) = 3*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 3*X1 + 2*X0 + 1; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X2 + 2*X1 + 2*X0; [ true ] () = 0; [ minus ] (X0,X1) = 3*X1 + 1*X0; [ ok ] (X0) = 0; [ false ] () = 0; [ Marked_proper ] (X0) = 2*X0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 1*X1 + 1*X0 + 2; [ s ] (X0) = 1*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 2*X0; [ 0 ] () = 2; [ if ] (X0,X1,X2) = 2*X2 + 2*X1 + 2*X0; [ true ] () = 0; [ minus ] (X0,X1) = 2*X1 + 2*X0; [ ok ] (X0) = 0; [ false ] () = 0; [ Marked_proper ] (X0) = 3*X0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 2*X1 + 2; [ s ] (X0) = 2*X0 + 1; [ top ] (X0) = 0; [ active ] (X0) = 2*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 3*X1 + 1*X0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X2 + 1*X1 + 2*X0; [ true ] () = 2; [ minus ] (X0,X1) = 1*X1 + 1*X0; [ ok ] (X0) = 0; [ false ] () = 0; [ Marked_proper ] (X0) = 1*X0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 2*X1 + 2; [ s ] (X0) = 1*X0 + 1; [ top ] (X0) = 0; [ active ] (X0) = 2*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 1*X1; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X2 + 1*X1 + 2*X0; [ true ] () = 0; [ minus ] (X0,X1) = 1*X1 + 1*X0 + 1; [ ok ] (X0) = 0; [ false ] () = 0; [ Marked_proper ] (X0) = 3*X0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 1*X0 + 2*X1 + 0; [ s ] (X0) = 1*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 2*X0 + 0; [ proper ] (X0) = 1*X0 + 0; [ geq ] (X0,X1) = 3*X0 + 0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 1 + 2*X0 + 1*X1 + 2*X2 + 0; [ true ] () = 2 + 0; [ minus ] (X0,X1) = 0; [ ok ] (X0) = 0; [ false ] () = 2 + 0; [ Marked_proper ] (X0) = 3*X0 + 0; ]} ]} ]} ]} ]} ]} ]} ]} ]} { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 3*X0; [ s ] (X0) = 3*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 3*X1; [ Marked_active ] (X0) = 3*X0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X1 + 2*X0 + 1; [ true ] () = 0; [ minus ] (X0,X1) = 0; [ ok ] (X0) = 0; [ false ] () = 2; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 2*X0 + 2; [ s ] (X0) = 2*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 1*X1 + 1*X0; [ Marked_active ] (X0) = 3*X0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X1; [ true ] () = 2; [ minus ] (X0,X1) = 1*X0; [ ok ] (X0) = 0; [ false ] () = 2; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 1 + 0; [ div ] (X0,X1) = 3 + 3*X1 + 0; [ s ] (X0) = 1 + 2*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 2*X0 + 0; [ proper ] (X0) = 2 + 3*X0 + 0; [ geq ] (X0,X1) = 3 + 2*X1 + 0; [ Marked_active ] (X0) = 3*X0 + 0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 1 + 1*X0 + 0; [ true ] () = 3 + 0; [ minus ] (X0,X1) = 2 + 0; [ ok ] (X0) = 2 + 0; [ false ] () = 1 + 0; ]} ]} ]} ]} ]} { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 1*X0 + 0; [ s ] (X0) = 1*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 0; [ Marked_geq ] (X0,X1) = 2*X1 + 0; [ proper ] (X0) = 2 + 3*X0 + 0; [ geq ] (X0,X1) = 2 + 3*X0 + 0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 1*X0 + 0; [ true ] () = 2 + 0; [ minus ] (X0,X1) = 1*X1 + 0; [ ok ] (X0) = 2 + 2*X0 + 0; [ false ] () = 0; ]} { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 1*X0 + 0; [ s ] (X0) = 1*X0 + 0; [ Marked_minus ] (X0,X1) = 1*X1 + 0; [ top ] (X0) = 0; [ active ] (X0) = 0; [ proper ] (X0) = 2 + 0; [ geq ] (X0,X1) = 1*X0 + 0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 1*X0 + 0; [ true ] () = 0; [ minus ] (X0,X1) = 1*X1 + 0; [ ok ] (X0) = 1 + 2*X0 + 0; [ false ] () = 0; ]} { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 1*X0 + 2; [ div ] (X0,X1) = 3*X1 + 2*X0; [ s ] (X0) = 1*X0 + 1; [ top ] (X0) = 0; [ active ] (X0) = 2*X0; [ proper ] (X0) = 1*X0; [ geq ] (X0,X1) = 1*X1 + 1*X0; [ 0 ] () = 2; [ if ] (X0,X1,X2) = 2*X2 + 1*X1 + 2*X0; [ true ] () = 1; [ minus ] (X0,X1) = 1*X0; [ Marked_s ] (X0) = 3*X0; [ ok ] (X0) = 1*X0; [ false ] () = 2; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 2 + 0; [ div ] (X0,X1) = 2 + 2*X1 + 0; [ s ] (X0) = 2*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0 + 0; [ proper ] (X0) = 2*X0 + 0; [ geq ] (X0,X1) = 3 + 2*X0 + 0; [ 0 ] () = 3 + 0; [ if ] (X0,X1,X2) = 2 + 2*X1 + 0; [ true ] () = 2 + 0; [ minus ] (X0,X1) = 3 + 3*X0 + 2*X1 + 0; [ Marked_s ] (X0) = 3*X0 + 0; [ ok ] (X0) = 1 + 1*X0 + 0; [ false ] () = 2 + 0; ]} ]} ]} { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 1*X0 + 2; [ div ] (X0,X1) = 1*X0; [ s ] (X0) = 1*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0 + 2; [ proper ] (X0) = 0; [ geq ] (X0,X1) = 0; [ 0 ] () = 0; [ Marked_div ] (X0,X1) = 1*X0; [ if ] (X0,X1,X2) = 1*X2 + 2*X1 + 1*X0; [ true ] () = 0; [ minus ] (X0,X1) = 0; [ ok ] (X0) = 2*X0; [ false ] () = 0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ div ] (X0,X1) = 2 + 3*X1 + 0; [ s ] (X0) = 1*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 2 + 1*X0 + 0; [ proper ] (X0) = 3*X0 + 0; [ geq ] (X0,X1) = 2*X0 + 0; [ 0 ] () = 2 + 0; [ Marked_div ] (X0,X1) = 1*X1 + 0; [ if ] (X0,X1,X2) = 2*X1 + 0; [ true ] () = 3 + 0; [ minus ] (X0,X1) = 2*X1 + 0; [ ok ] (X0) = 1 + 2*X0 + 0; [ false ] () = 2 + 0; ]} ]} ]} { DP termination of: , CRITERION: CG using polynomial interpretation = [ mark ] (X0) = 1*X0 + 2; [ Marked_if ] (X0,X1,X2) = 1*X0; [ div ] (X0,X1) = 1*X0; [ s ] (X0) = 1*X0; [ top ] (X0) = 0; [ active ] (X0) = 1*X0 + 2; [ proper ] (X0) = 0; [ geq ] (X0,X1) = 1*X0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 2*X2 + 2*X1 + 1*X0; [ true ] () = 0; [ minus ] (X0,X1) = 0; [ ok ] (X0) = 2*X0; [ false ] () = 0; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ mark ] (X0) = 0; [ Marked_if ] (X0,X1,X2) = 1*X1 + 0; [ div ] (X0,X1) = 1*X0 + 0; [ s ] (X0) = 1*X0 + 0; [ top ] (X0) = 0; [ active ] (X0) = 0; [ proper ] (X0) = 1 + 0; [ geq ] (X0,X1) = 1*X1 + 0; [ 0 ] () = 0; [ if ] (X0,X1,X2) = 1*X0 + 0; [ true ] () = 0; [ minus ] (X0,X1) = 1*X1 + 0; [ ok ] (X0) = 1 + 1*X0 + 0; [ false ] () = 0; ]} ]} ]} ]} ]} Cime worked for 7.126433 seconds (real time) Cime Exit Status: 0