- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a__dbl(0) -> 0 [2] a__dbl(s(X)) -> s(s(dbl(X))) [3] a__dbls(nil) -> nil [4] a__dbls(cons(X,Y)) -> cons(dbl(X),dbls(Y)) [5] a__sel(0,cons(X,Y)) -> mark(X) [6] a__sel(s(X),cons(Y,Z)) -> a__sel(mark(X),mark(Z)) [7] a__indx(nil,X) -> nil [8] a__indx(cons(X,Y),Z) -> cons(sel(X,Z),indx(Y,Z)) [9] a__from(X) -> cons(X,from(s(X))) [10] mark(dbl(X)) -> a__dbl(mark(X)) [11] mark(dbls(X)) -> a__dbls(mark(X)) [12] mark(sel(X1,X2)) -> a__sel(mark(X1),mark(X2)) [13] mark(indx(X1,X2)) -> a__indx(mark(X1),X2) [14] mark(from(X)) -> a__from(X) [15] mark(0) -> 0 [16] mark(s(X)) -> s(X) [17] mark(nil) -> nil [18] mark(cons(X1,X2)) -> cons(X1,X2) [19] a__dbl(X) -> dbl(X) [20] a__dbls(X) -> dbls(X) [21] a__sel(X1,X2) -> sel(X1,X2) [22] a__indx(X1,X2) -> indx(X1,X2) [23] a__from(X) -> from(X) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a__dbl(0) >= 0 ; a__dbl(s(X)) >= s(s(dbl(X))) ; a__dbl(X) >= dbl(X) ; a__dbls(nil) >= nil ; a__dbls(cons(X,Y)) >= cons(dbl(X),dbls(Y)) ; a__dbls(X) >= dbls(X) ; mark(0) >= 0 ; mark(s(X)) >= s(X) ; mark(dbl(X)) >= a__dbl(mark(X)) ; mark(nil) >= nil ; mark(cons(X1,X2)) >= cons(X1,X2) ; mark(dbls(X)) >= a__dbls(mark(X)) ; mark(sel(X1,X2)) >= a__sel(mark(X1),mark(X2)) ; mark(indx(X1,X2)) >= a__indx(mark(X1),X2) ; mark(from(X)) >= a__from(X) ; a__sel(0,cons(X,Y)) >= mark(X) ; a__sel(s(X),cons(Y,Z)) >= a__sel(mark(X),mark(Z)) ; a__sel(X1,X2) >= sel(X1,X2) ; a__indx(nil,X) >= nil ; a__indx(cons(X,Y),Z) >= cons(sel(X,Z),indx(Y,Z)) ; a__indx(X1,X2) >= indx(X1,X2) ; a__from(X) >= cons(X,from(s(X))) ; a__from(X) >= from(X) ; Marked_a__sel(0,cons(X,Y)) >= Marked_mark(X) ; Marked_a__sel(s(X),cons(Y,Z)) >= Marked_a__sel(mark(X),mark(Z)) ; Marked_a__sel(s(X),cons(Y,Z)) >= Marked_mark(X) ; Marked_a__sel(s(X),cons(Y,Z)) >= Marked_mark(Z) ; Marked_mark(dbl(X)) >= Marked_mark(X) ; Marked_mark(dbls(X)) >= Marked_mark(X) ; Marked_mark(sel(X1,X2)) >= Marked_a__sel(mark(X1),mark(X2)) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X1) ; Marked_mark(sel(X1,X2)) >= Marked_mark(X2) ; Marked_mark(indx(X1,X2)) >= Marked_mark(X1) ; } + Disjunctions:{ { Marked_a__sel(0,cons(X,Y)) > Marked_mark(X) ; } { Marked_a__sel(s(X),cons(Y,Z)) > Marked_a__sel(mark(X),mark(Z)) ; } { Marked_a__sel(s(X),cons(Y,Z)) > Marked_mark(X) ; } { Marked_a__sel(s(X),cons(Y,Z)) > Marked_mark(Z) ; } { Marked_mark(dbl(X)) > Marked_mark(X) ; } { Marked_mark(dbls(X)) > Marked_mark(X) ; } { Marked_mark(sel(X1,X2)) > Marked_a__sel(mark(X1),mark(X2)) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(sel(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(indx(X1,X2)) > Marked_mark(X1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 41.733820 seconds (real time) Cime Exit Status: 0