- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a__p(0) -> 0 [2] a__p(s(X)) -> mark(X) [3] a__leq(0,Y) -> true [4] a__leq(s(X),0) -> false [5] a__leq(s(X),s(Y)) -> a__leq(mark(X),mark(Y)) [6] a__if(true,X,Y) -> mark(X) [7] a__if(false,X,Y) -> mark(Y) [8] a__diff(X,Y) -> a__if(a__leq(mark(X),mark(Y)),0,s(diff(p(X),Y))) [9] mark(p(X)) -> a__p(mark(X)) [10] mark(leq(X1,X2)) -> a__leq(mark(X1),mark(X2)) [11] mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) [12] mark(diff(X1,X2)) -> a__diff(mark(X1),mark(X2)) [13] mark(0) -> 0 [14] mark(s(X)) -> s(mark(X)) [15] mark(true) -> true [16] mark(false) -> false [17] a__p(X) -> p(X) [18] a__leq(X1,X2) -> leq(X1,X2) [19] a__if(X1,X2,X3) -> if(X1,X2,X3) [20] a__diff(X1,X2) -> diff(X1,X2) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a__p(0) >= 0 ; a__p(s(X)) >= mark(X) ; a__p(X) >= p(X) ; mark(0) >= 0 ; mark(s(X)) >= s(mark(X)) ; mark(true) >= true ; mark(false) >= false ; mark(diff(X1,X2)) >= a__diff(mark(X1),mark(X2)) ; mark(p(X)) >= a__p(mark(X)) ; mark(leq(X1,X2)) >= a__leq(mark(X1),mark(X2)) ; mark(if(X1,X2,X3)) >= a__if(mark(X1),X2,X3) ; a__leq(0,Y) >= true ; a__leq(s(X),0) >= false ; a__leq(s(X),s(Y)) >= a__leq(mark(X),mark(Y)) ; a__leq(X1,X2) >= leq(X1,X2) ; a__if(true,X,Y) >= mark(X) ; a__if(false,X,Y) >= mark(Y) ; a__if(X1,X2,X3) >= if(X1,X2,X3) ; a__diff(X,Y) >= a__if(a__leq(mark(X),mark(Y)),0,s(diff(p(X),Y))) ; a__diff(X1,X2) >= diff(X1,X2) ; Marked_a__diff(X,Y) >= Marked_a__if(a__leq(mark(X),mark(Y)),0, s(diff(p(X),Y))) ; Marked_a__diff(X,Y) >= Marked_a__leq(mark(X),mark(Y)) ; Marked_a__diff(X,Y) >= Marked_mark(X) ; Marked_a__diff(X,Y) >= Marked_mark(Y) ; Marked_a__if(true,X,Y) >= Marked_mark(X) ; Marked_a__if(false,X,Y) >= Marked_mark(Y) ; Marked_a__leq(s(X),s(Y)) >= Marked_a__leq(mark(X),mark(Y)) ; Marked_a__leq(s(X),s(Y)) >= Marked_mark(X) ; Marked_a__leq(s(X),s(Y)) >= Marked_mark(Y) ; Marked_a__p(s(X)) >= Marked_mark(X) ; Marked_mark(s(X)) >= Marked_mark(X) ; Marked_mark(diff(X1,X2)) >= Marked_a__diff(mark(X1),mark(X2)) ; Marked_mark(diff(X1,X2)) >= Marked_mark(X1) ; Marked_mark(diff(X1,X2)) >= Marked_mark(X2) ; Marked_mark(p(X)) >= Marked_a__p(mark(X)) ; Marked_mark(p(X)) >= Marked_mark(X) ; Marked_mark(leq(X1,X2)) >= Marked_a__leq(mark(X1),mark(X2)) ; Marked_mark(leq(X1,X2)) >= Marked_mark(X1) ; Marked_mark(leq(X1,X2)) >= Marked_mark(X2) ; Marked_mark(if(X1,X2,X3)) >= Marked_a__if(mark(X1),X2,X3) ; Marked_mark(if(X1,X2,X3)) >= Marked_mark(X1) ; } + Disjunctions:{ { Marked_a__diff(X,Y) > Marked_a__if(a__leq(mark(X),mark(Y)),0,s(diff(p(X),Y))) ; } { Marked_a__diff(X,Y) > Marked_a__leq(mark(X),mark(Y)) ; } { Marked_a__diff(X,Y) > Marked_mark(X) ; } { Marked_a__diff(X,Y) > Marked_mark(Y) ; } { Marked_a__if(true,X,Y) > Marked_mark(X) ; } { Marked_a__if(false,X,Y) > Marked_mark(Y) ; } { Marked_a__leq(s(X),s(Y)) > Marked_a__leq(mark(X),mark(Y)) ; } { Marked_a__leq(s(X),s(Y)) > Marked_mark(X) ; } { Marked_a__leq(s(X),s(Y)) > Marked_mark(Y) ; } { Marked_a__p(s(X)) > Marked_mark(X) ; } { Marked_mark(s(X)) > Marked_mark(X) ; } { Marked_mark(diff(X1,X2)) > Marked_a__diff(mark(X1),mark(X2)) ; } { Marked_mark(diff(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(diff(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(p(X)) > Marked_a__p(mark(X)) ; } { Marked_mark(p(X)) > Marked_mark(X) ; } { Marked_mark(leq(X1,X2)) > Marked_a__leq(mark(X1),mark(X2)) ; } { Marked_mark(leq(X1,X2)) > Marked_mark(X1) ; } { Marked_mark(leq(X1,X2)) > Marked_mark(X2) ; } { Marked_mark(if(X1,X2,X3)) > Marked_a__if(mark(X1),X2,X3) ; } { Marked_mark(if(X1,X2,X3)) > Marked_mark(X1) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 31.070367 seconds (real time) Cime Exit Status: 0