- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] p(0) -> 0 [2] p(s(X)) -> X [3] leq(0,Y) -> true [4] leq(s(X),0) -> false [5] leq(s(X),s(Y)) -> leq(X,Y) [6] if(true,X,Y) -> activate(X) [7] if(false,X,Y) -> activate(Y) [8] diff(X,Y) -> if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) [9] 0 -> n__0 [10] s(X) -> n__s(X) [11] diff(X1,X2) -> n__diff(X1,X2) [12] p(X) -> n__p(X) [13] activate(n__0) -> 0 [14] activate(n__s(X)) -> s(activate(X)) [15] activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2)) [16] activate(n__p(X)) -> p(activate(X)) [17] activate(X) -> X Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 2 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { 0 >= n__0 ; p(0) >= 0 ; p(s(X)) >= X ; p(X) >= n__p(X) ; s(X) >= n__s(X) ; leq(0,Y) >= true ; leq(s(X),0) >= false ; leq(s(X),s(Y)) >= leq(X,Y) ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(activate(X)) ; activate(n__diff(X1,X2)) >= diff(activate(X1),activate(X2)) ; activate(n__p(X)) >= p(activate(X)) ; activate(X) >= X ; if(true,X,Y) >= activate(X) ; if(false,X,Y) >= activate(Y) ; diff(X,Y) >= if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) ; diff(X1,X2) >= n__diff(X1,X2) ; Marked_activate(n__s(X)) >= Marked_activate(X) ; Marked_activate(n__diff(X1,X2)) >= Marked_activate(X1) ; Marked_activate(n__diff(X1,X2)) >= Marked_activate(X2) ; Marked_activate(n__diff(X1,X2)) >= Marked_diff(activate(X1),activate(X2)) ; Marked_activate(n__p(X)) >= Marked_activate(X) ; Marked_diff(X,Y) >= Marked_if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) ; Marked_if(true,X,Y) >= Marked_activate(X) ; Marked_if(false,X,Y) >= Marked_activate(Y) ; } + Disjunctions:{ { Marked_activate(n__s(X)) > Marked_activate(X) ; } { Marked_activate(n__diff(X1,X2)) > Marked_activate(X1) ; } { Marked_activate(n__diff(X1,X2)) > Marked_activate(X2) ; } { Marked_activate(n__diff(X1,X2)) > Marked_diff(activate(X1),activate(X2)) ; } { Marked_activate(n__p(X)) > Marked_activate(X) ; } { Marked_diff(X,Y) > Marked_if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) ; } { Marked_if(true,X,Y) > Marked_activate(X) ; } { Marked_if(false,X,Y) > Marked_activate(Y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: 0 >= n__0 constraint: p(0) >= 0 constraint: p(s(X)) >= X constraint: p(X) >= n__p(X) constraint: s(X) >= n__s(X) constraint: leq(0,Y) >= true constraint: leq(s(X),0) >= false constraint: leq(s(X),s(Y)) >= leq(X,Y) constraint: activate(n__0) >= 0 constraint: activate(n__s(X)) >= s(activate(X)) constraint: activate(n__diff(X1,X2)) >= diff(activate(X1),activate(X2)) constraint: activate(n__p(X)) >= p(activate(X)) constraint: activate(X) >= X constraint: if(true,X,Y) >= activate(X) constraint: if(false,X,Y) >= activate(Y) constraint: diff(X,Y) >= if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) constraint: diff(X1,X2) >= n__diff(X1,X2) constraint: Marked_activate(n__s(X)) >= Marked_activate(X) constraint: Marked_activate(n__diff(X1,X2)) >= Marked_activate(X1) constraint: Marked_activate(n__diff(X1,X2)) >= Marked_activate(X2) constraint: Marked_activate(n__diff(X1,X2)) >= Marked_diff(activate(X1), activate(X2)) constraint: Marked_activate(n__p(X)) >= Marked_activate(X) constraint: Marked_diff(X,Y) >= Marked_if(leq(X,Y),n__0, n__s(n__diff(n__p(X),Y))) constraint: Marked_if(true,X,Y) >= Marked_activate(X) constraint: Marked_if(false,X,Y) >= Marked_activate(Y) APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { 0 >= n__0 ; p(0) >= 0 ; p(s(X)) >= X ; p(X) >= n__p(X) ; s(X) >= n__s(X) ; leq(0,Y) >= true ; leq(s(X),0) >= false ; leq(s(X),s(Y)) >= leq(X,Y) ; activate(n__0) >= 0 ; activate(n__s(X)) >= s(activate(X)) ; activate(n__diff(X1,X2)) >= diff(activate(X1),activate(X2)) ; activate(n__p(X)) >= p(activate(X)) ; activate(X) >= X ; if(true,X,Y) >= activate(X) ; if(false,X,Y) >= activate(Y) ; diff(X,Y) >= if(leq(X,Y),n__0,n__s(n__diff(n__p(X),Y))) ; diff(X1,X2) >= n__diff(X1,X2) ; Marked_leq(s(X),s(Y)) >= Marked_leq(X,Y) ; } + Disjunctions:{ { Marked_leq(s(X),s(Y)) > Marked_leq(X,Y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 5.787972 seconds (real time) Cime Exit Status: 0