- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(p(0)) -> mark(0) [2] active(p(s(X))) -> mark(X) [3] active(leq(0,Y)) -> mark(true) [4] active(leq(s(X),0)) -> mark(false) [5] active(leq(s(X),s(Y))) -> mark(leq(X,Y)) [6] active(if(true,X,Y)) -> mark(X) [7] active(if(false,X,Y)) -> mark(Y) [8] active(diff(X,Y)) -> mark(if(leq(X,Y),0,s(diff(p(X),Y)))) [9] active(p(X)) -> p(active(X)) [10] active(s(X)) -> s(active(X)) [11] active(leq(X1,X2)) -> leq(active(X1),X2) [12] active(leq(X1,X2)) -> leq(X1,active(X2)) [13] active(if(X1,X2,X3)) -> if(active(X1),X2,X3) [14] active(diff(X1,X2)) -> diff(active(X1),X2) [15] active(diff(X1,X2)) -> diff(X1,active(X2)) [16] p(mark(X)) -> mark(p(X)) [17] s(mark(X)) -> mark(s(X)) [18] leq(mark(X1),X2) -> mark(leq(X1,X2)) [19] leq(X1,mark(X2)) -> mark(leq(X1,X2)) [20] if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) [21] diff(mark(X1),X2) -> mark(diff(X1,X2)) [22] diff(X1,mark(X2)) -> mark(diff(X1,X2)) [23] proper(p(X)) -> p(proper(X)) [24] proper(0) -> ok(0) [25] proper(s(X)) -> s(proper(X)) [26] proper(leq(X1,X2)) -> leq(proper(X1),proper(X2)) [27] proper(true) -> ok(true) [28] proper(false) -> ok(false) [29] proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) [30] proper(diff(X1,X2)) -> diff(proper(X1),proper(X2)) [31] p(ok(X)) -> ok(p(X)) [32] s(ok(X)) -> ok(s(X)) [33] leq(ok(X1),ok(X2)) -> ok(leq(X1,X2)) [34] if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) [35] diff(ok(X1),ok(X2)) -> ok(diff(X1,X2)) [36] top(mark(X)) -> top(proper(X)) [37] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 8 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { active(p(0)) >= mark(0) ; active(p(s(X))) >= mark(X) ; active(p(X)) >= p(active(X)) ; active(s(X)) >= s(active(X)) ; active(leq(0,Y)) >= mark(true) ; active(leq(s(X),0)) >= mark(false) ; active(leq(s(X),s(Y))) >= mark(leq(X,Y)) ; active(leq(X1,X2)) >= leq(active(X1),X2) ; active(leq(X1,X2)) >= leq(X1,active(X2)) ; active(if(true,X,Y)) >= mark(X) ; active(if(false,X,Y)) >= mark(Y) ; active(if(X1,X2,X3)) >= if(active(X1),X2,X3) ; active(diff(X,Y)) >= mark(if(leq(X,Y),0,s(diff(p(X),Y)))) ; active(diff(X1,X2)) >= diff(active(X1),X2) ; active(diff(X1,X2)) >= diff(X1,active(X2)) ; p(mark(X)) >= mark(p(X)) ; p(ok(X)) >= ok(p(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; leq(mark(X1),X2) >= mark(leq(X1,X2)) ; leq(ok(X1),ok(X2)) >= ok(leq(X1,X2)) ; leq(X1,mark(X2)) >= mark(leq(X1,X2)) ; if(mark(X1),X2,X3) >= mark(if(X1,X2,X3)) ; if(ok(X1),ok(X2),ok(X3)) >= ok(if(X1,X2,X3)) ; diff(mark(X1),X2) >= mark(diff(X1,X2)) ; diff(ok(X1),ok(X2)) >= ok(diff(X1,X2)) ; diff(X1,mark(X2)) >= mark(diff(X1,X2)) ; proper(0) >= ok(0) ; proper(p(X)) >= p(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(true) >= ok(true) ; proper(leq(X1,X2)) >= leq(proper(X1),proper(X2)) ; proper(false) >= ok(false) ; proper(if(X1,X2,X3)) >= if(proper(X1),proper(X2),proper(X3)) ; proper(diff(X1,X2)) >= diff(proper(X1),proper(X2)) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 53.454164 seconds (real time) Cime Exit Status: 0