- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] active(from(X)) -> mark(cons(X,from(s(X)))) [2] active(2ndspos(0,Z)) -> mark(rnil) [3] active(2ndspos(s(N),cons(X,cons(Y,Z)))) -> mark(rcons(posrecip(Y),2ndsneg(N,Z))) [4] active(2ndsneg(0,Z)) -> mark(rnil) [5] active(2ndsneg(s(N),cons(X,cons(Y,Z)))) -> mark(rcons(negrecip(Y),2ndspos(N,Z))) [6] active(pi(X)) -> mark(2ndspos(X,from(0))) [7] active(plus(0,Y)) -> mark(Y) [8] active(plus(s(X),Y)) -> mark(s(plus(X,Y))) [9] active(times(0,Y)) -> mark(0) [10] active(times(s(X),Y)) -> mark(plus(Y,times(X,Y))) [11] active(square(X)) -> mark(times(X,X)) [12] active(s(X)) -> s(active(X)) [13] active(posrecip(X)) -> posrecip(active(X)) [14] active(negrecip(X)) -> negrecip(active(X)) [15] active(cons(X1,X2)) -> cons(active(X1),X2) [16] active(rcons(X1,X2)) -> rcons(active(X1),X2) [17] active(rcons(X1,X2)) -> rcons(X1,active(X2)) [18] active(from(X)) -> from(active(X)) [19] active(2ndspos(X1,X2)) -> 2ndspos(active(X1),X2) [20] active(2ndspos(X1,X2)) -> 2ndspos(X1,active(X2)) [21] active(2ndsneg(X1,X2)) -> 2ndsneg(active(X1),X2) [22] active(2ndsneg(X1,X2)) -> 2ndsneg(X1,active(X2)) [23] active(pi(X)) -> pi(active(X)) [24] active(plus(X1,X2)) -> plus(active(X1),X2) [25] active(plus(X1,X2)) -> plus(X1,active(X2)) [26] active(times(X1,X2)) -> times(active(X1),X2) [27] active(times(X1,X2)) -> times(X1,active(X2)) [28] active(square(X)) -> square(active(X)) [29] s(mark(X)) -> mark(s(X)) [30] posrecip(mark(X)) -> mark(posrecip(X)) [31] negrecip(mark(X)) -> mark(negrecip(X)) [32] cons(mark(X1),X2) -> mark(cons(X1,X2)) [33] rcons(mark(X1),X2) -> mark(rcons(X1,X2)) [34] rcons(X1,mark(X2)) -> mark(rcons(X1,X2)) [35] from(mark(X)) -> mark(from(X)) [36] 2ndspos(mark(X1),X2) -> mark(2ndspos(X1,X2)) [37] 2ndspos(X1,mark(X2)) -> mark(2ndspos(X1,X2)) [38] 2ndsneg(mark(X1),X2) -> mark(2ndsneg(X1,X2)) [39] 2ndsneg(X1,mark(X2)) -> mark(2ndsneg(X1,X2)) [40] pi(mark(X)) -> mark(pi(X)) [41] plus(mark(X1),X2) -> mark(plus(X1,X2)) [42] plus(X1,mark(X2)) -> mark(plus(X1,X2)) [43] times(mark(X1),X2) -> mark(times(X1,X2)) [44] times(X1,mark(X2)) -> mark(times(X1,X2)) [45] square(mark(X)) -> mark(square(X)) [46] proper(0) -> ok(0) [47] proper(s(X)) -> s(proper(X)) [48] proper(posrecip(X)) -> posrecip(proper(X)) [49] proper(negrecip(X)) -> negrecip(proper(X)) [50] proper(nil) -> ok(nil) [51] proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) [52] proper(rnil) -> ok(rnil) [53] proper(rcons(X1,X2)) -> rcons(proper(X1),proper(X2)) [54] proper(from(X)) -> from(proper(X)) [55] proper(2ndspos(X1,X2)) -> 2ndspos(proper(X1),proper(X2)) [56] proper(2ndsneg(X1,X2)) -> 2ndsneg(proper(X1),proper(X2)) [57] proper(pi(X)) -> pi(proper(X)) [58] proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) [59] proper(times(X1,X2)) -> times(proper(X1),proper(X2)) [60] proper(square(X)) -> square(proper(X)) [61] s(ok(X)) -> ok(s(X)) [62] posrecip(ok(X)) -> ok(posrecip(X)) [63] negrecip(ok(X)) -> ok(negrecip(X)) [64] cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) [65] rcons(ok(X1),ok(X2)) -> ok(rcons(X1,X2)) [66] from(ok(X)) -> ok(from(X)) [67] 2ndspos(ok(X1),ok(X2)) -> ok(2ndspos(X1,X2)) [68] 2ndsneg(ok(X1),ok(X2)) -> ok(2ndsneg(X1,X2)) [69] pi(ok(X)) -> ok(pi(X)) [70] plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) [71] times(ok(X1),ok(X2)) -> ok(times(X1,X2)) [72] square(ok(X)) -> ok(square(X)) [73] top(mark(X)) -> top(proper(X)) [74] top(ok(X)) -> top(active(X)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 15 components: { --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { cons(mark(X1),X2) >= mark(cons(X1,X2)) ; cons(ok(X1),ok(X2)) >= ok(cons(X1,X2)) ; from(mark(X)) >= mark(from(X)) ; from(ok(X)) >= ok(from(X)) ; s(mark(X)) >= mark(s(X)) ; s(ok(X)) >= ok(s(X)) ; active(cons(X1,X2)) >= cons(active(X1),X2) ; active(from(X)) >= mark(cons(X,from(s(X)))) ; active(from(X)) >= from(active(X)) ; active(s(X)) >= s(active(X)) ; active(2ndspos(s(N),cons(X,cons(Y,Z)))) >= mark(rcons(posrecip(Y), 2ndsneg(N,Z))) ; active(2ndspos(0,Z)) >= mark(rnil) ; active(2ndspos(X1,X2)) >= 2ndspos(active(X1),X2) ; active(2ndspos(X1,X2)) >= 2ndspos(X1,active(X2)) ; active(rcons(X1,X2)) >= rcons(active(X1),X2) ; active(rcons(X1,X2)) >= rcons(X1,active(X2)) ; active(posrecip(X)) >= posrecip(active(X)) ; active(2ndsneg(s(N),cons(X,cons(Y,Z)))) >= mark(rcons(negrecip(Y), 2ndspos(N,Z))) ; active(2ndsneg(0,Z)) >= mark(rnil) ; active(2ndsneg(X1,X2)) >= 2ndsneg(active(X1),X2) ; active(2ndsneg(X1,X2)) >= 2ndsneg(X1,active(X2)) ; active(negrecip(X)) >= negrecip(active(X)) ; active(pi(X)) >= mark(2ndspos(X,from(0))) ; active(pi(X)) >= pi(active(X)) ; active(plus(s(X),Y)) >= mark(s(plus(X,Y))) ; active(plus(0,Y)) >= mark(Y) ; active(plus(X1,X2)) >= plus(active(X1),X2) ; active(plus(X1,X2)) >= plus(X1,active(X2)) ; active(times(s(X),Y)) >= mark(plus(Y,times(X,Y))) ; active(times(0,Y)) >= mark(0) ; active(times(X1,X2)) >= times(active(X1),X2) ; active(times(X1,X2)) >= times(X1,active(X2)) ; active(square(X)) >= mark(times(X,X)) ; active(square(X)) >= square(active(X)) ; 2ndspos(mark(X1),X2) >= mark(2ndspos(X1,X2)) ; 2ndspos(ok(X1),ok(X2)) >= ok(2ndspos(X1,X2)) ; 2ndspos(X1,mark(X2)) >= mark(2ndspos(X1,X2)) ; rcons(mark(X1),X2) >= mark(rcons(X1,X2)) ; rcons(ok(X1),ok(X2)) >= ok(rcons(X1,X2)) ; rcons(X1,mark(X2)) >= mark(rcons(X1,X2)) ; posrecip(mark(X)) >= mark(posrecip(X)) ; posrecip(ok(X)) >= ok(posrecip(X)) ; 2ndsneg(mark(X1),X2) >= mark(2ndsneg(X1,X2)) ; 2ndsneg(ok(X1),ok(X2)) >= ok(2ndsneg(X1,X2)) ; 2ndsneg(X1,mark(X2)) >= mark(2ndsneg(X1,X2)) ; negrecip(mark(X)) >= mark(negrecip(X)) ; negrecip(ok(X)) >= ok(negrecip(X)) ; pi(mark(X)) >= mark(pi(X)) ; pi(ok(X)) >= ok(pi(X)) ; plus(mark(X1),X2) >= mark(plus(X1,X2)) ; plus(ok(X1),ok(X2)) >= ok(plus(X1,X2)) ; plus(X1,mark(X2)) >= mark(plus(X1,X2)) ; times(mark(X1),X2) >= mark(times(X1,X2)) ; times(ok(X1),ok(X2)) >= ok(times(X1,X2)) ; times(X1,mark(X2)) >= mark(times(X1,X2)) ; square(mark(X)) >= mark(square(X)) ; square(ok(X)) >= ok(square(X)) ; proper(cons(X1,X2)) >= cons(proper(X1),proper(X2)) ; proper(from(X)) >= from(proper(X)) ; proper(s(X)) >= s(proper(X)) ; proper(rnil) >= ok(rnil) ; proper(2ndspos(X1,X2)) >= 2ndspos(proper(X1),proper(X2)) ; proper(0) >= ok(0) ; proper(rcons(X1,X2)) >= rcons(proper(X1),proper(X2)) ; proper(posrecip(X)) >= posrecip(proper(X)) ; proper(2ndsneg(X1,X2)) >= 2ndsneg(proper(X1),proper(X2)) ; proper(negrecip(X)) >= negrecip(proper(X)) ; proper(pi(X)) >= pi(proper(X)) ; proper(plus(X1,X2)) >= plus(proper(X1),proper(X2)) ; proper(times(X1,X2)) >= times(proper(X1),proper(X2)) ; proper(square(X)) >= square(proper(X)) ; proper(nil) >= ok(nil) ; top(mark(X)) >= top(proper(X)) ; top(ok(X)) >= top(active(X)) ; Marked_top(mark(X)) >= Marked_top(proper(X)) ; Marked_top(ok(X)) >= Marked_top(active(X)) ; } + Disjunctions:{ { Marked_top(mark(X)) > Marked_top(proper(X)) ; } { Marked_top(ok(X)) > Marked_top(active(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 78.497750 seconds (real time) Cime Exit Status: 0