- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] a(a(divides,0),a(s,y)) -> true [2] a(a(divides,a(s,x)),a(s,y)) -> a(a(a(div2,x),a(s,y)),y) [3] a(a(a(div2,x),y),0) -> a(a(divides,x),y) [4] a(a(a(div2,0),y),a(s,z)) -> false [5] a(a(a(div2,a(s,x)),y),a(s,z)) -> a(a(a(div2,x),y),z) [6] a(a(filter,f),nil) -> nil [7] a(a(filter,f),a(a(cons,x),xs)) -> a(a(a(if,a(f,x)),x),a(a(filter,f),xs)) [8] a(a(a(if,true),x),xs) -> a(a(cons,x),xs) [9] a(a(a(if,false),x),xs) -> xs [10] a(a(not,f),x) -> a(not2,a(f,x)) [11] a(not2,true) -> false [12] a(not2,false) -> true [13] a(sieve,nil) -> nil [14] a(sieve,a(a(cons,x),xs)) -> a(a(cons,x),a(sieve,a(a(filter,a(not,a(divides,x))),xs))) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a(a(a(div2,a(s,x)),y),a(s,z)) >= a(a(a(div2,x),y),z) ; a(a(a(div2,0),y),a(s,z)) >= false ; a(a(a(div2,x),y),0) >= a(a(divides,x),y) ; a(a(a(if,true),x),xs) >= a(a(cons,x),xs) ; a(a(a(if,false),x),xs) >= xs ; a(a(divides,a(s,x)),a(s,y)) >= a(a(a(div2,x),a(s,y)),y) ; a(a(divides,0),a(s,y)) >= true ; a(a(filter,f),a(a(cons,x),xs)) >= a(a(a(if,a(f,x)),x),a(a(filter,f),xs)) ; a(a(filter,f),nil) >= nil ; a(a(not,f),x) >= a(not2,a(f,x)) ; a(not2,true) >= false ; a(not2,false) >= true ; a(sieve,a(a(cons,x),xs)) >= a(a(cons,x), a(sieve,a(a(filter,a(not,a(divides,x))),xs))) ; a(sieve,nil) >= nil ; Marked_a(a(a(div2,a(s,x)),y),a(s,z)) >= Marked_a(a(a(div2,x),y),z) ; Marked_a(a(a(div2,a(s,x)),y),a(s,z)) >= Marked_a(a(div2,x),y) ; Marked_a(a(a(div2,x),y),0) >= Marked_a(a(divides,x),y) ; Marked_a(a(a(if,true),x),xs) >= Marked_a(a(cons,x),xs) ; Marked_a(a(divides,a(s,x)),a(s,y)) >= Marked_a(a(a(div2,x),a(s,y)),y) ; Marked_a(a(divides,a(s,x)),a(s,y)) >= Marked_a(a(div2,x),a(s,y)) ; Marked_a(a(filter,f),a(a(cons,x),xs)) >= Marked_a(a(a(if,a(f,x)),x), a(a(filter,f),xs)) ; Marked_a(a(filter,f),a(a(cons,x),xs)) >= Marked_a(a(filter,f),xs) ; Marked_a(a(filter,f),a(a(cons,x),xs)) >= Marked_a(a(if,a(f,x)),x) ; Marked_a(a(filter,f),a(a(cons,x),xs)) >= Marked_a(f,x) ; Marked_a(a(not,f),x) >= Marked_a(f,x) ; Marked_a(sieve,a(a(cons,x),xs)) >= Marked_a(a(filter,a(not,a(divides,x))),xs) ; Marked_a(sieve,a(a(cons,x),xs)) >= Marked_a(a(cons,x), a(sieve, a(a(filter,a(not,a(divides,x))),xs))) ; Marked_a(sieve,a(a(cons,x),xs)) >= Marked_a(sieve, a(a(filter,a(not,a(divides,x))),xs)) ; } + Disjunctions:{ { Marked_a(a(a(div2,a(s,x)),y),a(s,z)) > Marked_a(a(a(div2,x),y),z) ; } { Marked_a(a(a(div2,a(s,x)),y),a(s,z)) > Marked_a(a(div2,x),y) ; } { Marked_a(a(a(div2,x),y),0) > Marked_a(a(divides,x),y) ; } { Marked_a(a(a(if,true),x),xs) > Marked_a(a(cons,x),xs) ; } { Marked_a(a(divides,a(s,x)),a(s,y)) > Marked_a(a(a(div2,x),a(s,y)),y) ; } { Marked_a(a(divides,a(s,x)),a(s,y)) > Marked_a(a(div2,x),a(s,y)) ; } { Marked_a(a(filter,f),a(a(cons,x),xs)) > Marked_a(a(a(if,a(f,x)),x), a(a(filter,f),xs)) ; } { Marked_a(a(filter,f),a(a(cons,x),xs)) > Marked_a(a(filter,f),xs) ; } { Marked_a(a(filter,f),a(a(cons,x),xs)) > Marked_a(a(if,a(f,x)),x) ; } { Marked_a(a(filter,f),a(a(cons,x),xs)) > Marked_a(f,x) ; } { Marked_a(a(not,f),x) > Marked_a(f,x) ; } { Marked_a(sieve,a(a(cons,x),xs)) > Marked_a(a(filter,a(not,a(divides,x))),xs) ; } { Marked_a(sieve,a(a(cons,x),xs)) > Marked_a(a(cons,x), a(sieve, a(a(filter,a(not,a(divides,x))),xs))) ; } { Marked_a(sieve,a(a(cons,x),xs)) > Marked_a(sieve, a(a(filter,a(not,a(divides,x))),xs)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 103.846740 seconds (real time) Cime Exit Status: 0