- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] eq(0,0) -> true [2] eq(0,s(x)) -> false [3] eq(s(x),0) -> false [4] eq(s(x),s(y)) -> eq(x,y) [5] le(0,y) -> true [6] le(s(x),0) -> false [7] le(s(x),s(y)) -> le(x,y) [8] app(nil,y) -> y [9] app(add(n,x),y) -> add(n,app(x,y)) [10] min(add(n,nil)) -> n [11] min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) [12] if_min(true,add(n,add(m,x))) -> min(add(n,x)) [13] if_min(false,add(n,add(m,x))) -> min(add(m,x)) [14] head(add(n,x)) -> n [15] tail(add(n,x)) -> x [16] tail(nil) -> nil [17] null(nil) -> true [18] null(add(n,x)) -> false [19] rm(n,nil) -> nil [20] rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) [21] if_rm(true,n,add(m,x)) -> rm(n,x) [22] if_rm(false,n,add(m,x)) -> add(m,rm(n,x)) [23] minsort(x) -> mins(x,nil,nil) [24] mins(x,y,z) -> if(null(x),x,y,z) [25] if(true,x,y,z) -> z [26] if(false,x,y,z) -> if2(eq(head(x),min(x)),x,y,z) [27] if2(true,x,y,z) -> mins(app(rm(head(x),tail(x)),y),nil,app(z,add(head(x),nil))) [28] if2(false,x,y,z) -> mins(tail(x),add(head(x),y),z) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 6 components: { --> --> --> --> --> } { --> --> --> --> } { --> } { --> } { --> --> --> --> } { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { eq(0,0) >= true ; eq(0,s(x)) >= false ; eq(s(x),0) >= false ; eq(s(x),s(y)) >= eq(x,y) ; le(0,y) >= true ; le(s(x),0) >= false ; le(s(x),s(y)) >= le(x,y) ; app(nil,y) >= y ; app(add(n,x),y) >= add(n,app(x,y)) ; min(add(n,nil)) >= n ; min(add(n,add(m,x))) >= if_min(le(n,m),add(n,add(m,x))) ; if_min(true,add(n,add(m,x))) >= min(add(n,x)) ; if_min(false,add(n,add(m,x))) >= min(add(m,x)) ; head(add(n,x)) >= n ; tail(nil) >= nil ; tail(add(n,x)) >= x ; null(nil) >= true ; null(add(n,x)) >= false ; rm(n,nil) >= nil ; rm(n,add(m,x)) >= if_rm(eq(n,m),n,add(m,x)) ; if_rm(true,n,add(m,x)) >= rm(n,x) ; if_rm(false,n,add(m,x)) >= add(m,rm(n,x)) ; mins(x,y,z) >= if(null(x),x,y,z) ; minsort(x) >= mins(x,nil,nil) ; if(true,x,y,z) >= z ; if(false,x,y,z) >= if2(eq(head(x),min(x)),x,y,z) ; if2(true,x,y,z) >= mins(app(rm(head(x),tail(x)),y),nil, app(z,add(head(x),nil))) ; if2(false,x,y,z) >= mins(tail(x),add(head(x),y),z) ; Marked_if2(true,x,y,z) >= Marked_mins(app(rm(head(x),tail(x)),y),nil, app(z,add(head(x),nil))) ; Marked_if2(false,x,y,z) >= Marked_mins(tail(x),add(head(x),y),z) ; Marked_mins(x,y,z) >= Marked_if(null(x),x,y,z) ; Marked_if(false,x,y,z) >= Marked_if2(eq(head(x),min(x)),x,y,z) ; } + Disjunctions:{ { Marked_if2(true,x,y,z) > Marked_mins(app(rm(head(x),tail(x)),y),nil, app(z,add(head(x),nil))) ; } { Marked_if2(false,x,y,z) > Marked_mins(tail(x),add(head(x),y),z) ; } { Marked_mins(x,y,z) > Marked_if(null(x),x,y,z) ; } { Marked_if(false,x,y,z) > Marked_if2(eq(head(x),min(x)),x,y,z) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat timeout reached === STOPING TIMER virtual === Time out for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 72.918787 seconds (real time) Cime Exit Status: 0