- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] c(b(a(X))) -> a(a(b(b(c(c(X)))))) [2] a(X) -> e [3] b(X) -> e [4] c(X) -> e Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a(X) >= e ; b(X) >= e ; c(b(a(X))) >= a(a(b(b(c(c(X)))))) ; c(X) >= e ; Marked_c(b(a(X))) >= Marked_c(c(X)) ; Marked_c(b(a(X))) >= Marked_c(X) ; } + Disjunctions:{ { Marked_c(b(a(X))) > Marked_c(c(X)) ; } { Marked_c(b(a(X))) > Marked_c(X) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: a(X) >= e constraint: b(X) >= e constraint: c(b(a(X))) >= a(a(b(b(c(c(X)))))) constraint: c(X) >= e constraint: Marked_c(b(a(X))) >= Marked_c(c(X)) constraint: Marked_c(b(a(X))) >= Marked_c(X) APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { a(X) >= e ; b(X) >= e ; c(b(a(X))) >= a(a(b(b(c(c(X)))))) ; c(X) >= e ; Marked_c(b(a(X))) >= Marked_c(c(X)) ; } + Disjunctions:{ { Marked_c(b(a(X))) > Marked_c(c(X)) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: a(X) >= e constraint: b(X) >= e constraint: c(b(a(X))) >= a(a(b(b(c(c(X)))))) constraint: c(X) >= e constraint: Marked_c(b(a(X))) >= Marked_c(c(X)) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] c(b(a(X))) -> a(a(b(b(c(c(X)))))) [2] a(X) -> e [3] b(X) -> e [4] c(X) -> e , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ a ] (X0) = [ [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_c ] (X0) = [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ c ] (X0) = [ [ 0 , 0 , 0 ] [ 1 , 0 , 1 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ b ] (X0) = [ [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 1 , 0 , 0 ] ]; [ e ] () = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: polynomial interpretation = [ a ] (X0) = 2 + 0; [ Marked_c ] (X0) = 3*X0 + 0; [ c ] (X0) = 2 + 0; [ b ] (X0) = 3 + 0; [ e ] () = 1 + 0; ]} ]} ]} ]} ]} Cime worked for 5.414633 seconds (real time) Cime Exit Status: 0