- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 1 components: { --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { p(a(a(x0)),p(x1,p(a(x2),x3))) >= p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ; Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(a(a(b(x1))),p(a(a(x0)),x3)) ; Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(a(a(x0)),x3) ; Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) ; } + Disjunctions:{ { Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) > Marked_p(a(a(b(x1))),p(a(a(x0)),x3)) ; } { Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) > Marked_p(a(a(x0)),x3) ; } { Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) > Marked_p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: p(a(a(x0)),p(x1,p(a(x2),x3))) >= p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) constraint: Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(a(a(b(x1))), p(a(a(x0)),x3)) constraint: Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(a(a(x0)),x3) constraint: Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(x2, p(a(a(b(x1))), p(a(a(x0)),x3))) APPLY CRITERIA (Graph splitting) Found 1 components: { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { p(a(a(x0)),p(x1,p(a(x2),x3))) >= p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ; Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) ; } + Disjunctions:{ { Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) > Marked_p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned Sat solver result read === STOPING TIMER real === === STOPING TIMER virtual === constraint: p(a(a(x0)),p(x1,p(a(x2),x3))) >= p(x2, p(a(a(b(x1))),p(a(a(x0)),x3))) constraint: Marked_p(a(a(x0)),p(x1,p(a(x2),x3))) >= Marked_p(x2, p(a(a(b(x1))), p(a(a(x0)),x3))) APPLY CRITERIA (Graph splitting) Found 0 components: SOLVED { TRS termination of: [1] p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) , CRITERION: MDP [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: CG using polynomial interpretation = [ p ] (X0,X1) = 2*X1 + 2; [ b ] (X0) = 0; [ a ] (X0) = 0; [ Marked_p ] (X0,X1) = 2*X1; removing [ { DP termination of: , CRITERION: SG [ { DP termination of: , CRITERION: ORD [ Solution found: Matrix polynomial interpretation (strict sub matrices size: 1x1) = [ p ] (X0,X1) = [ [ 0 , 1 , 0 ] [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ b ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ a ] (X0) = [ [ 0 , 0 , 0 ] [ 0 , 1 , 1 ] [ 1 , 0 , 0 ] ]*X0 + [ [ 1 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; [ Marked_p ] (X0,X1) = [ [ 0 , 1 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X1 + [ [ 0 , 1 , 1 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]*X0 + [ [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] [ 0 , 0 , 0 ] ]; ]} ]} ]} ]} ]} Cime worked for 9.412189 seconds (real time) Cime Exit Status: 0