- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] 0(#) -> # [2] +(#,x) -> x [3] +(x,#) -> x [4] +(0(x),0(y)) -> 0(+(x,y)) [5] +(0(x),1(y)) -> 1(+(x,y)) [6] +(1(x),0(y)) -> 1(+(x,y)) [7] +(0(x),j(y)) -> j(+(x,y)) [8] +(j(x),0(y)) -> j(+(x,y)) [9] +(1(x),1(y)) -> j(+(+(x,y),1(#))) [10] +(j(x),j(y)) -> 1(+(+(x,y),j(#))) [11] +(1(x),j(y)) -> 0(+(x,y)) [12] +(j(x),1(y)) -> 0(+(x,y)) [13] +(+(x,y),z) -> +(x,+(y,z)) [14] opp(#) -> # [15] opp(0(x)) -> 0(opp(x)) [16] opp(1(x)) -> j(opp(x)) [17] opp(j(x)) -> 1(opp(x)) [18] -(x,y) -> +(x,opp(y)) [19] *(#,x) -> # [20] *(0(x),y) -> 0( *(x,y)) [21] *(1(x),y) -> +(0( *(x,y)),y) [22] *(j(x),y) -> -(0( *(x,y)),y) [23] *( *(x,y),z) -> *(x, *(y,z)) [24] *(+(x,y),z) -> +( *(x,z), *(y,z)) [25] *(x,+(y,z)) -> +( *(x,y), *(x,z)) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 3 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { 0(#) >= # ; +(#,x) >= x ; +(0(x),0(y)) >= 0(+(x,y)) ; +(0(x),1(y)) >= 1(+(x,y)) ; +(0(x),j(y)) >= j(+(x,y)) ; +(+(x,y),z) >= +(x,+(y,z)) ; +(1(x),0(y)) >= 1(+(x,y)) ; +(1(x),1(y)) >= j(+(+(x,y),1(#))) ; +(1(x),j(y)) >= 0(+(x,y)) ; +(j(x),0(y)) >= j(+(x,y)) ; +(j(x),1(y)) >= 0(+(x,y)) ; +(j(x),j(y)) >= 1(+(+(x,y),j(#))) ; +(x,#) >= x ; opp(#) >= # ; opp(0(x)) >= 0(opp(x)) ; opp(1(x)) >= j(opp(x)) ; opp(j(x)) >= 1(opp(x)) ; -(x,y) >= +(x,opp(y)) ; *(#,x) >= # ; *(0(x),y) >= 0( *(x,y)) ; *(+(x,y),z) >= +( *(x,z), *(y,z)) ; *(1(x),y) >= +(0( *(x,y)),y) ; *(j(x),y) >= -(0( *(x,y)),y) ; *( *(x,y),z) >= *(x, *(y,z)) ; *(x,+(y,z)) >= +( *(x,y), *(x,z)) ; Marked_*(0(x),y) >= Marked_*(x,y) ; Marked_*(+(x,y),z) >= Marked_*(y,z) ; Marked_*(+(x,y),z) >= Marked_*(x,z) ; Marked_*(1(x),y) >= Marked_*(x,y) ; Marked_*(j(x),y) >= Marked_*(x,y) ; Marked_*( *(x,y),z) >= Marked_*(y,z) ; Marked_*( *(x,y),z) >= Marked_*(x, *(y,z)) ; Marked_*(x,+(y,z)) >= Marked_*(x,z) ; Marked_*(x,+(y,z)) >= Marked_*(x,y) ; } + Disjunctions:{ { Marked_*(0(x),y) > Marked_*(x,y) ; } { Marked_*(+(x,y),z) > Marked_*(y,z) ; } { Marked_*(+(x,y),z) > Marked_*(x,z) ; } { Marked_*(1(x),y) > Marked_*(x,y) ; } { Marked_*(j(x),y) > Marked_*(x,y) ; } { Marked_*( *(x,y),z) > Marked_*(y,z) ; } { Marked_*( *(x,y),z) > Marked_*(x, *(y,z)) ; } { Marked_*(x,+(y,z)) > Marked_*(x,z) ; } { Marked_*(x,+(y,z)) > Marked_*(x,y) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 1.977583 seconds (real time) Cime Exit Status: 0