- : unit = () h : heuristic = - : unit = () APPLY CRITERIA (Marked dependency pairs) TRS termination of: [1] top1(free(x),y) -> top2(check(new(x)),y) [2] top1(free(x),y) -> top2(new(x),check(y)) [3] top1(free(x),y) -> top2(check(x),new(y)) [4] top1(free(x),y) -> top2(x,check(new(y))) [5] top2(x,free(y)) -> top1(check(new(x)),y) [6] top2(x,free(y)) -> top1(new(x),check(y)) [7] top2(x,free(y)) -> top1(check(x),new(y)) [8] top2(x,free(y)) -> top1(x,check(new(y))) [9] new(free(x)) -> free(new(x)) [10] old(free(x)) -> free(old(x)) [11] new(serve) -> free(serve) [12] old(serve) -> free(serve) [13] check(free(x)) -> free(check(x)) [14] check(new(x)) -> new(check(x)) [15] check(old(x)) -> old(check(x)) [16] check(old(x)) -> old(x) Sub problem: guided: DP termination of: END GUIDED APPLY CRITERIA (Graph splitting) Found 4 components: { --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> } { --> --> --> --> --> --> --> --> --> } { --> } { --> } APPLY CRITERIA (Choosing graph) Trying to solve the following constraints: { top2(x,free(y)) >= top1(check(new(x)),y) ; top2(x,free(y)) >= top1(check(x),new(y)) ; top2(x,free(y)) >= top1(new(x),check(y)) ; top2(x,free(y)) >= top1(x,check(new(y))) ; check(new(x)) >= new(check(x)) ; check(free(x)) >= free(check(x)) ; check(old(x)) >= old(check(x)) ; check(old(x)) >= old(x) ; new(free(x)) >= free(new(x)) ; new(serve) >= free(serve) ; top1(free(x),y) >= top2(check(new(x)),y) ; top1(free(x),y) >= top2(check(x),new(y)) ; top1(free(x),y) >= top2(new(x),check(y)) ; top1(free(x),y) >= top2(x,check(new(y))) ; old(free(x)) >= free(old(x)) ; old(serve) >= free(serve) ; Marked_top2(x,free(y)) >= Marked_top1(check(new(x)),y) ; Marked_top2(x,free(y)) >= Marked_top1(check(x),new(y)) ; Marked_top2(x,free(y)) >= Marked_top1(new(x),check(y)) ; Marked_top2(x,free(y)) >= Marked_top1(x,check(new(y))) ; Marked_top1(free(x),y) >= Marked_top2(check(new(x)),y) ; Marked_top1(free(x),y) >= Marked_top2(check(x),new(y)) ; Marked_top1(free(x),y) >= Marked_top2(new(x),check(y)) ; Marked_top1(free(x),y) >= Marked_top2(x,check(new(y))) ; } + Disjunctions:{ { Marked_top2(x,free(y)) > Marked_top1(check(new(x)),y) ; } { Marked_top2(x,free(y)) > Marked_top1(check(x),new(y)) ; } { Marked_top2(x,free(y)) > Marked_top1(new(x),check(y)) ; } { Marked_top2(x,free(y)) > Marked_top1(x,check(new(y))) ; } { Marked_top1(free(x),y) > Marked_top2(check(new(x)),y) ; } { Marked_top1(free(x),y) > Marked_top2(check(x),new(y)) ; } { Marked_top1(free(x),y) > Marked_top2(new(x),check(y)) ; } { Marked_top1(free(x),y) > Marked_top2(x,check(new(y))) ; } } === TIMER virtual : 10.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 10.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. Entering rpo_solver === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 25.000000 === Search parameters: AFS type: 2 ; time limit: 25.. === STOPING TIMER virtual === === TIMER virtual : 15.000000 === Entering poly_solver Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 15.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. === TIMER virtual : 50.000000 === trying sub matrices of size: 1 Matrix interpretation constraints generated. Search parameters: LINEAR MATRIX 3x3 (strict=1x1) ; time limit: 50.. Termination constraints generated. Starting Sat solver initialization Calling Sat solver... === STOPING TIMER virtual === === TIMER real : 50.000000 === === STOPING TIMER real === Sat solver returned === STOPING TIMER real === === STOPING TIMER virtual === No solution found for these parameters. No solution found for these constraints. APPLY CRITERIA (ID_CRIT) NOT SOLVED No proof found Cime worked for 4.950969 seconds (real time) Cime Exit Status: 0